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Abstract 
We present a multi-stage stochastic programming formulation for the planning of 
clinical trials in the pharmaceutical research and development (R&D) pipeline. Using a 
scenario-based approach the discrete nature of the uncertainty in clinical trials can be 
modeled without loss of information.  Given a portfolio of potential drugs and limited 
resources, the model finds the optimal timing to maximize the expected net present 
value.  Ideas are presented to reduce the size of the formulation, focusing on the non-
anticipativity constraints required to model indistinguishable scenarios.  
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1. Introduction and Background 
The pharmaceutical industry has been undergoing change due to rapid growth and 
changes in the managed-health care environment.  The productivity of research and 
development (R&D) pipelines, in terms of new entities registered per dollar of 
investment, is in decline, while effective patent lives are shorter and barriers to entry 
during active patents are lowered [1].  Therefore, it is imperative for pharmaceutical 
companies to manage their R&D pipelines to lower costs and improve throughput [2, 3].  
This is a challenging task due to the stochastic nature of the R&D process: if a drug fails 
any clinical trial, its development is stopped and all prior investment is lost; if it passes 
all trials, it enters the marketplace where profits are usually significantly larger than 
development costs.  Methods applied to this problem include deterministic models using 
expected values, simulation-based approaches and dynamic programming methods [4,  
5, 6].  The goal of this paper is to develop a computationally tractable multi-period 
stochastic programming  (SP) formulation that accounts for uncertainty in clinical trial 
outcomes.  
1.1. Pharmaceutical Research and Development 
For each drug that enters the marketplace, thousands of compounds are tested and over 
$900 million are typically spent on R&D over a period of 10-15 years [3].  To maintain 
a steady stream of new drugs to market, it is therefore necessary to have a number of 
candidate products in the pipeline at all times.  However, the number of drugs in testing 
at any given time is limited by the availability of key resources.  Given a portfolio of 
potential drugs, one then has to prioritize them and decide how to allocate scarce 
resources among them. 
While uncertainty exists in cost, duration, resource requirements and revenue from 
sales, outcome of the clinical trials is the most significant source of uncertainty for the 
development process, in large part due to the all or nothing nature of the approval 
process.  The goal of a planning method is to optimize an economic metric such as the 
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expected net present value of the candidate portfolio.  Minimization of weighted time to 
market, resource utilization and metrics of volatility and risk are also considered [2]. 
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Figure 1: Stages of Pharmaceutical Product Development [3]. 

1.2. Multistage Stochastic Programming 
The two basic elements of scenario-based multi-stage stochastic programming (SP) 
formulations are: scenarios representing the possible realizations of uncertainty and the 
definition of stages.  The stages typically represent the discretization of the planning 
horizon into time periods, t∈T, while for discrete uncertainty (such as explored in this 
problem) each scenario, s∈S, represents a unique combination of the realizations of all 
uncertain events. 
At t = 1, the decision-maker has no information about uncertainty, which means that all 
scenarios are indistinguishable and all decisions made must be identical.  As trials are 
performed, uncertainty is revealed, scenarios become distinguishable and the decision-
maker can take recourse actions to account for this.  If we assume that scenarios s and s’ 
are indistinguishable before time ts,s’, it is necessary to force the optimization decisions  
x in scenarios s and s’ to be identical at all times prior to ts,s’: 

{ } { } tssxxtt tsts
ss ,','
', ∀=⇒<  (1) 

To develop a mathematical programming formulation, we need to convert the logic 
condition in eqn (1) into mixed-integer constraints.  If stage ts,s’ is known in advance, 
this is fairly simple to do, but in the R&D pipeline, this depends on choices made by the 
decision-maker.  These constraints are usually enforced through the introduction of a 
binary variable ytss’ for each pair (s,s’) and stage t.  They are referred to as non-
ancticipativity constraints and thorough discussion can be found in [7]. 

2. Proposed Approach 

2.1. Problem Statement 
The formal problem statement of the problem we consider in this paper is as follows: 
Given, 

i) a fixed time horizon divided into uniform time periods t∈T={1,2,…,|T|} 
ii) a set of candidate drugs i∈I with known potential revenues 
iii) a set of resource types r∈R with fixed availability ρr

max  
iv) a set of clinical trials j∈J={PI,PII,PIII} for each drug i∈I, with probability of 

success 
ijp̂ , deterministic cost cij, duration τij, and resource requirements ρijr 

determine which clinical trials should be carried out and when in order to maximize the 
expected net present value of the R&D pipeline.   
We assume that the revenue Rvi from sales of drug i is a linearly decreasing function of 
the delay, Di, in the development and completion time, Li, of PIII (shown in Figure 2) 
and that there are no interdependencies regarding the success probabilities of drugs. 
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Figure 2: Revenue as a function of time 

Since positive cash flows occur only at the end of PIII and we consider a finite time 
horizon, solutions with empty pipelines towards the end of the horizon will appear 
which would not be optimal in a real situation.  To address this problem, we assign a 
weighted expected revenue to drugs that have not failed any tests, but still are not 
completed by the end of the time horizon. 
2.2. Scenario Representation 
The uncertainty considered in this work is discrete: a drug either passes or fails a 
clinical trial.  In other words, the outcome of clinical trial j of drug i, can be viewed as a 
discrete random variable with sample space Ωij = {pass, fail}.  A naïve approach would 
be to define eight outcomes for each drug, based on passing or failing each trial.  
However, a number of these scenarios would never be distinguished as after the failure 
of trial, no other trials are performed.  Therefore it is possible to aggregate these 
outcomes into four events per drug based upon when the drug first fails a trial or 
successfully navigates all trials. Thus, uncertainty is represented via a single uncertain 
parameter per drug i∈I with revised sample space Ωi ={I-F,II-F,III-F,III-P}. 
2.3. Model Reductions 
Our approach exploits the following five ideas to reduce the number of non-
anticipativity constraints and binary variables (see [8] for details): 
1) The number of scenarios necessary to represent uncertainty in the outcome of 

clinical trials of |I| drugs can be reduced from 8|I| to 4|I|. 
2) By definition, if pair (s,s’) is indistinguishable at stage t, so is (s’,s). 
3) Property 1: It is sufficient to express non-anticipativity constraints only for pairs of 

scenarios that differ in the outcome of only one drug. 
4) Property 2: It is sufficient to express non-anticipativity constraints only for 

scenarios that differ in the outcome of a single clinical trial, i.e. (s,s’) represent 
consecutive elements of Ωi. 

5) The logic condition that links scenarios (s,s’) can be expressed in terms of an 
existing decisions binary variable; i.e. no new binary variables yss’t need to be 
introduced. 

Property 1 is based on the work of Goel and Grossmann [7].  Property 2 is applicable 
only in problems where the sequence of uncertainty realization for some parameters is 
known.  In this case all clinical trials must be carried out in order (PI > PII > PIII). 
We next define set Ψ to be the set of scenario pairs over which non-anticipativity 
constraints must be enforced.  For a scenario pair (s,s’)∈Ψ, there exists a single trial  
(is,s’,js,s) at which they become distinguishable.  If Xijts indicates whether trial j of drug i 
is being started at time t in scenario s, it is possible to express the logic condition for the 
non-anticipativity constraints in eq (1) using variable Xijts for i=is,s’, j=js,s’. Implementing 
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the above reductions to a 3-drug 12-period problem, we can reduce the cardinality of Ψ 
from 261,632 to 141, and the number of non-anticipativy constraints from 
approximately 37 million to 31,104, while not introducing additional binary variables. 

3. Mathematical Formulation 

3.1. Optimization Variables 
To express non-anticipativity constraints, we have to keep track of when the 
differentiating trial (is,s’,js,s’) is finished.  To facilitate this, we introduce variable Yijts

 that 
is equal to 1 if task (i,j) is finished by the beginning of period t in scenario s: 

stjiXYY stjistjiijts ij
,,,,,,,1,, ∀+= −− τ  (2) 

As mentioned in section 2.1, it is necessary to assign revenue to drugs that have not 
gone through all trials, but also have not failed any trials by the end of the planning 
horizon.  We define variable Zijts = 1 if trial (i,j-1) is finished by time t and trial (i,j) has 
not started at or before time t in scenario s: 

tsiXZ
tt

stPIistPIi ,,1
'

,',,,,, ∀−= ∑
≤

 (3) 

stPIIIPIIjiXXZZ ijtsstjistjiijts ij
,},,{,,,1,,1,, 1

∈∀−+=
−−−− τ  (4) 

Note that both Yijts and Zijts can be calculated in terms of variables Xijts and thus do not 
have to be defined as binaries. 
3.2. Non-anticipativity Constraints 
As mentioned in sections 2.3 and 3.3, non-anticipativity constraints for (s,s’)∈Ψ must 
be active until the differentiating trial (is,s’,js,s’) has finished, which can be expressed as: 

Ψ∈∀∀=⇒= )',(,},{}0{ ',,, ',', sstjiXXY ijtsijtsstji ssss  

This can be converted into the following constraints: 

1,)',(,,
,,,',,, ',',',', >Ψ∈∀≤−≤− tssjiYXXY
stjiijtsijtsstji ssssssss  (5) 

siXX PIisPIi ,1,1,,,1,, ∀=  (6) 

3.3. Sequencing and Resource Constraints 
Equation (7) enforces that profit generating trials are not run multiple times: 

sjiX
t

ijts ,,1 ∀≤∑  (7) 

Equation (8) keeps trial (i,j) from starting until trial (i,j-1) is completed: 

stPIIIPIIjiYX stji
tt

sijt ,},,{,,,1,
'

' ∈∀≤ −
≤
∑  (8) 

Resource constraints are expressed as follows: 

strX r
i j ttt

sijtijr
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'
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ρρ
τ

 (9) 
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In a given scenario s, there are clinical trials that cannot be performed because a 
previous trial fails.  Thus, if F(s)⊂IxJ is the subset of trials (i,j) that cannot be carried 
out in scenario s, we can add: 

)(),(,,0 sFjistX ijts ∈∀=  (10) 

3.4. Objective Function 
The total development cost Csts in scenario s is calculated in eqn (12), where cdt is a 
time discounting factor: 

sXccdCst
tji

ijtsijts ∀= ∑
,,

 (11) 

If we define SI(s)⊂I as the subset of drugs that can successfully pass PIII in scenario s, 
we calculate the revenue Rvs from the completion of all trials: 

{ }∑ ∑
∈

∀+−+−=
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max )()(
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The revenue FRvs that can be materialized in the future is calculated as: 

∑ ∑ ∑ ∑∑
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 (13) 

where revij
open and revijt

run are estimates of the revenue that would be realized if open 
drug i were completed as quickly as possible after the time horizon and fij is a 
discounting factor to encourage the completion of clinical trials. 
If ps is the probability of scenario s occurring, the objective function is: 

∑ −+=
s

ssss CstFRvRvpENPV )(max  (14) 

with Xijts∈{0,1}, Yijts, Zijts∈[0,1] (15) 
The proposed SP formulation M1 consists of eqs (2)- (15).  
3.5. Tightening Constraints 
Even with the dramatic reduction in constraints and binary variables, M1 is still a large 
MIP formulation that grows exponentially in the number of drugs.  By exploiting the 
structure of the problem, we can express a subset of non-anticipativity constraints as 
equalities: 
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The reformulated model M2 with eqs (16)-(18) instead of eq (5) has fewer constraints 
and smaller integrality gap (see Table 1).  Formulation M2 can be used to solve 
problems with up to five drugs entering clinical trials on a standard desktop computer. 
Of the non-anticipativity constraints that remain as inequalities in eq (18), only a small 
fraction are active.  We are currently developing a branch-and-cut algorithm that 
exploits this, potentially allowing more challenging problems to be solved.  
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Table1: Model statistics for M1 and M2 and solution statistics for M2. 

Drugs Variables Equations Non-anticipativity Integr. Gap (%) Solution statistics 
  2-4, 6-15  M1  M2 M1 M2 Nodes CPU s 

3 14,365 14,209 23,470 18,284 7.5 4.2 6 62.4 
4 51,201 51,500 111,612 93,180 5.6 2.2 6 70.7 
5 255,489 261,533 687,200 595,040 5.3 2.2 16 2,215.5 

4. Example 
Three products are to be tested using two resource types.  The planning horizon is 36 
months divided into 12 3-month periods.  The optimal solution has an ENPV of 
$840.1M.  The probability density functions of NPV (64 scenarios) and a timeline of 
where scenario decisions differ are shown in Fig 3. The proposed formulation was 
modeled in GAMS 22.4 and solved using CPLEX 10.0 on a 2.8 GHz Pentium4 with 
512 MB of RAM.  The example was generated in 17 sec and solved in 25 sec.   
Table2: Data for example. 

Drug Duration 
(months) 

Probability Cost ($1M) Resource 1 
max=4 

Resource 2 
max=4 

revmax 
($1M) 

 PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII Rmax 
D1 6 12 12 0.50 0.60 0.70 10 100 220 1 2 3 2 2 3 2,500 
D2 6 9 15 0.45 0.65 0.70 10 80 200 2 2 3 1 2 3 2,400 
D3 6 9 12 0.50 0.50 0.80 10 70 210 1 2 3 1 3 3 2,650 
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Figure 3. Probability density functions of NPV and decision tree for example. 
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