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Abstract 
There is a considerable effort in the literature trying to calculate the mean force between 
globular proteins (and colloidal particles). To this purpose, we used here the ion-specific 
Poisson-Boltzmann (PB) equation that presents good results of ionic concentration 
profiles around a macroion, especially for salt solutions containing monovalent ions. 
The ion-specific PB equation includes not only electrostatic interactions but also 
dispersion potentials, originated from polarizabilities of ions and proteins. This enables 
us to predict ion-specific properties of colloidal systems. Results are in agreement with 
the experimental observed Hofmeister series. The main contribution of this paper is the 
use of a differential approach to calculate the mean force between aqueous proteins and 
colloidal particles instead of the classical quadrature approach. The integral expressions 
needed to calculate the mean force, potential of mean force and second virial 
coefficients have been avoided using this new numerical procedure. These integrals 
were transformed in a set of first order partial differential equations solved 
simultaneously with the ion-specific PB equation. Resulted expressions were written in 
bispherical coordinates, and then numerically solved through finite volume method. 
This simultaneous approach presents more accuracy in the calculation of the mean force 
in comparison with the classical approach, where the potential profile is obtained by 
solving the PB equation, and mean force is calculated afterwards. Important 
thermodynamic properties are obtained from the mean force (and consequently, from 
the potential of mean force), e.g., osmotic second virial coefficients and phase diagrams. 
These thermodynamic properties are related to protein aggregation, essential in 
biotechnology and pharmaceutical industries. 
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1. Introduction 
 
The mean force between charged surfaces in an aqueous electrolyte solution is a central 
preoccupation of colloid science and biotechnology. Especially, protein aggregation and 
precipitation – governed by the force acting between the particles – are crucial in 
medicine and biotechnology industry.   

Forces between charged surfaces in electrolyte solutions have been found to be 
highly ion specific [1-6]. The reason for this ion specificity, as pointed out by Ninham 
and co-workers [1], is to a large extent due to previously neglected ion-specific 
nonelectrostatic (NES) potentials acting between ions and between ions and charged 
interfaces.[1,5,6] The original DLVO [1] theory fails to predict any such ion specificity. 
However, when ion-specific NES forces are treated at the same nonlinear level as the 
electrostatic forces, the origin of ion-specific effects finally comes into sight [7]. 

As indicated by Moon et al. [8], salt-induced protein precipitation is commonly 
used to purify aqueous proteins. Protein solubility is governed by many factors 
including pH, surface charge distribution, size, salt type, and salt concentration [9].  

More than 100 years ago, Hofmeister showed that the concentration of a salt 
required to precipitate a protein solution depends strongly on the choice of the salt [10]. 
According to Ninham et al. [1,2,6], contributions that lead to ion specificity depend on 
ion size, effective polarization of ions, and solvation near interfaces with varying water 
concentration. For a recent overview of some of these effects, see ref 4. 

Using Monte Carlo simulations, Tavares and co-workers [5,11,12] showed that 
nonelectrostatic (NES) potentials play an important role in protein-protein interactions 
in salt solutions. Lima et al. (2007b) [9] solved the modified Poisson-Boltzmann 
equation to determine the protein-protein interaction under varying conditions such as 
pH, salt concentration, and ion type. Without adjustable parameters, results obtained 
were in excellent agreement with experiment for osmotic second virial coefficients. The 
model used took into account that the protein surface is covered with acidic and basic 
charged groups that can be described with the charge regulation model, as shown in 
Ninham and Parsegian [14]. This same model is used here, but with a different 
numerical technique to calculate the integrals in bispherical coordinates, as described in 
Section 3.  

Hoskins and Levine (1956) [14] made the first attempt to solve the non-linear 
Poisson–Boltzmann (PB) equation for identical spheres. More accurate calculations 
have been obtained over the years since then, using similar techniques [15–17].  

A more recent contribution was the calculation of double layer forces between 
identical spherical particles using a spline collocation scheme [18]. In 1996, Stankovich 
and Carnie [19] employed similar methods to study double layer interactions between a 
sphere and a plate, geometry relevant to atomic force microscope measurements. 

In the present paper, a modified version of the PB equation is solved using finite 
volume method in bispherical geometry [7,9,20]. This modified version considers non-
electrostatic potentials together with electrostatic potential in the nonlinear PB theory.  
Lima et al. 2007c [20] solved this PB equation for two spheres using finite volume 
method. Once the electrostatic potential profile was obtained, the double layer force 
between the spheres (colloidal particles) was calculated solving an integral in 
bispherical coordinates. Here this integral is converted in a differential equation that is 
solved using finite volume discretization scheme. The mean forces between two 
colloidal particles and between two aqueous globular proteins predicted here are 
compared with those obtained using conventional integration method (9, 20).  
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2. Ion-Specific Poisson-Boltzmann Equation in Bispherical Coordinates 
 
Lima et al. (2007b,c) have recently presented results for the interaction between two 
charged spherical colloidal particles and two globular proteins by solving the Poisson-
Boltzmann equation in bispherical coordinates using a finite-volume method [9, 20]. 
The protein charges are assumed to be smeared out on the surface.  

Including ion-protein dispersion potentials, the non-linear Poisson-Boltzmann 
equation in bispherical coordinates is 
 

( ) ( )[ ]+− −−−−=∇ UU ψψψ expexp
2
12 , (1) 

 

where 2∇  is the Laplacian operator expressed in bispherical coordinates [18-21]; 
( )Tkze Bioni /φψ =  is the electrostatic potential in nondimensional form, where φ   is the 

potential, e is the electric charge, ionz  is the charge of ion i, Bk  is the Boltzmann 
constant and T is the absolute temperature. +U  and −U are the dispersion van der Waals 
interactions between a cation (+) and both proteins and between an anion (-) and both 
proteins, respectively. These NES potentials are obtained from Lifshitz theory [5,9,20].  

The ion-specific Poisson-Boltzmann equation is solved using the finite-volume 
method described in Ref. 13. Once the nondimensional electrostatic potential is 
calculated, we use the expression for the double-layer nondimensional force [19,20]:  
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Here, ( )θη,  are bispherical coordinates and ( ) 2/sinh 0ηκσ=a , where κ  is the 

inverse of the Debye screening length, σ  is the particle diameter and 0η  is the value of 
η at the surface of the sphere. The nondimensional electrostatic force f is evaluated at 
the surface 0=η . This plane was chosen to give good accuracy [19]. 

From the double-layer force calculated using Eq.(2), we obtain the corresponding 
double-layer contribution to the potential of mean force PBW  [9]: 
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The total potential of mean force W is 

hsHamPB WWWW ++= , (4) 
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where hsW  is the hard-sphere contribution, and HamW  is the Hamaker dispersion 
interaction, i.e., the direct potential between two protein particles due to non-
electrostatic interactions both calculated according to ref. 9. 

In Eq. (4), W is the free energy required to bring two proteins initially separated 
by an infinite distance to the center-to-center distance R. Using the potential of mean 
force W, we calculate the osmotic second virial coefficient [9] from 
 

( )( )∫
∞

−−=
0

2/
2 41

2
dRRe

M
NB TkRWA B π , (5) 

 
where AN  is Avogadro’s number and M is the molecular weight of the protein. 
 

3. Numerical Method 
 

In this paper we use finite volume method to solve the modified Poisson-Boltzmann 
equation (Eq.(1)). The same method is used to calculate the integral in Eq. (2). This 
procedure requires Eq. (2) to be written as a differential equation as follows: 
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where 0=η  and ( ) 00 =F . The value of the derivatives are calculated numerically 
from the solution of the modified Poisson-Boltzmann equation for each value of θ . 

The value of the force f given in Eq.(2) is obtained evaluating the function F at 
the end of the interval: 
 

( )πFf = . (7) 

  
Eq. (6) is integrated simultaneously with Eq.(1). Once we use the same 

discretization method to solve both equations, results given by Eq. (7) are expected to 
be more accurate than those using conventional integration methods.  

More details about finite volume method are given elsewhere [20]. 
 

4. Results 
 
In this section we present some results obtained from the simultaneous integration of 
Poisson-Boltzmann equation and Eq.(6), using finite volume method, as described in 
Section 3. All the results are in agreement with previous ones obtained from the solution 
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PB equation using finite volume method and subsequent integration using Simpson 
Method to calculate the force [7,9,20]. 

In Fig. 1a we reproduce the results reported by Lima et al. (2007c) [20]. In this 
figure we show the force between two similar spherical colloidal particles with 
nondimensional radius 6.57=srκ  ( 20Års = ) as a function of the closest approach 
distance hκ  between the particles. The surface charge densities are 2

1 /03.0 mC−=σ  and 
2

2 /01.0 mC=σ .  Four different 0.1 M salt solutions are considered: non-polarizable ions 
(NP), NaCl, NaBr and NaI. The ions radii are Åri 2= . We can see that the results 
obtained from finite volume method (symbols) are exactly the same as those reported by 
Lima et al. (2007c), using Simpson method (lines). 

Fig. 1b shows the function F obtained from the solution of Eq.(6) as function of θ 
for the same electrolytes considered in Fig. 1a. These curves correspond to a fixed 
closest distance 1=hκ . Because of the initial condition, all the curves begin in 

0)0( =F . The values of ( )πF corresponds to the nondimensional double layer force f 
between the particles at 1=hκ . 

 

 
Fig.1. (a) Nondimensional force f between two spheres with charge densities σ1 = -0.03 C/m2  and 
σ2 = 0.01 C/m2 interacting in different 0.1 molar salt solutions. We consider four cases: non-
polarizable ions (solid line, square), NaCl (dashed line, circle), NaBr (dash-dotted line, triangle), 
and NaI (dash-double-dotted line, diamond). Lines correspond to Simpson method [20] and 
symbols correspond to finite volume method. (b) Function F(θ) (see Eq.(6)) for a closest distance 
is 1=hκ . The value of F(π) corresponds to the force f . 

 
The same technique described in Section 3 can be used to calculate the integrals 

in Eq.(3) and Eq.(5). Using this approach we compute the potential of mean force and 
second virial coefficient as a function of the salt concentration for different pHs. Fig. 2 
illustrates this approach for lysozyme protein at pH = 12. This pH is above the 
isoelectric point of the protein (pI ≈ 11.2). 

We observe in Fig. 2 that, at this pH, the less polarizable the anion, the more 
attractive the force. This happens because above pI protein surfaces are negatively 
charged. Therefore, when the polarizability of the anion increases, there is an increase in 
the concentration of co-ions near the surfaces due to dispersion (attractive) interactions 
between ions and surfaces. This higher concentration of “undesirable” anions gives rise 
to a repulsive contribution to the double layer force. An opposite series was reported by 
Lima et al. (2007b) [9], for lysozyme at pH = 4.5 (below pI), as expected according to 
results reported by Hofmeister’s and other works on ion specificity. 
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Fig.2. Second virial coefficient for aqueous lysozyme at pH 12 and at 298 K as a function of salt 
concentration. Lines are as in Fig.1. 
  

5. Conclusions 
Double layer force, potential of mean force and second virial coefficients were 
successfully calculated for colloidal particles and globular proteins. The technique 
proposed to calculate integrals using the same discretization method as for the Poisson-
Boltzmann equation revealed to be efficient and consistent. Results presented have 
reproduced previous ion specific effects and are in agreement with Hofmeister effects 
reported in the literature. 
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