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Abstract 
This work introduces a general framework for the global optimization of arbitrary 
single- and multi-objective optimization tasks. The framework covers the industrial 
demand on a user-friendly toolkit uniting arbitrary optimizations in one graphical user 
interface. The framework includes a stand-alone solver communicating over a free 
programmable interface with one or multiple instances of any simulation tool. The 
functionality of the framework is shown by two highly differing case studies. The first 
concerns the determination of intrinsic kinetics, carried out at our industrial partners the 
Evonik Degussa GmbH and Evonik Oxeno GmbH. The second addresses the multi-
objective mixed-integer dynamic optimization of a middle vessel batch distillation 
including the startup. In both case studies the high flexibility of the framework, its easy 
setup and its robust optimization capabilities will be shown. 
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1. Introduction 
In the last decade optimization tasks have become a crucial technology in industry. 
They are one of the main challenges in chemical and process engineering today since 
they bear an important part to save competitiveness of industrial companies [1].  
Optimizations are important in all stages of product and plant life cycles. That means on 
the one hand regularly occurring optimization tasks e.g. concerning data regression for 
reaction kinetics, pressure loss correlations or thermodynamic properties like vapor 
pressure curves. On the other hand there arise extensive optimization problems 
concerning the modeling and design of whole processes. All these tasks imply complex 
optimizations including non-linearity, mixed integer problems, dynamic optimizations, 
structural complexities, boundary conditions or multiple objective functions. 
 
In general there are solution methods available for all kinds of optimization problems. 
These were mainly developed for academic purposes. Today many common 
engineering programs utilize these developments with user-friendly graphical user 
interfaces (GUI). However, integrated solution methods often are limited to few 
optimization tasks with a fixed structure. They lack the possibility to freely setup more 
complex jobs. By contrast there are comprehensive mathematical toolkits available 
offering a great freedom to setup models and optimization tasks. Anyway, these 
programs usually are missing a user-friendly GUI.  
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The objective of this contribution is to provide a sophisticated framework for all kinds 
of single- and multi-objective optimization tasks including an easy to use GUI and 
usage of arbitrary simulation toolkits. 

2. Optimization framework 
The framework consists of four major elements as shown in Figure 1. The first one 
covers an evolutionary algorithm (EA) as solver that is provided in a single-objective 
and a multi-objective implementation. As second element an arbitrary simulation tool 
with the possibility of remote access is applied. The third element comprises a suitable 
communication interface for the formulated problem. Finally the fourth element is a 
GUI covering all other parts in an optimization. 
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Figure 1: Communication structure of the optimization framework 

2.1. Solver algorithm 
For the solver algorithm an evolutionary algorithm (EA) was chosen. This is for two 
reasons. First and most important, an EA is not specialized on any kind of problem (e.g. 
NLP, MINLP or MIDO) [2]. Furthermore, it can perform global optimizations while it 
is independent of initial values [2]. For single-objective optimizations the Modified 
Differential Evolution (MDE) algorithm by Angira and Babu is applied and for multi- 
objective optimizations the non-constrain-dominated sorting MDE presented by 
Gruetzmann et al. was chosen [3-5]. 
 
Besides the EA other more specialized and thus faster solvers can be implemented. 
Main restriction is that the only information available about the used simulation are 
input and output values. Accordingly the mathematics of the optimization is fully 
unknown to the solver. 
 
The chosen EA as a general solver is implemented in Visual Basic for Applications 
(VBA) with the GUI realized in MS Excel. This platform was chosen for two reasons. 
First, MS Excel is a well known and accepted standard in industry and research. 
Moreover, most commercial and free simulation tools available comprise 
communication protocols to VBA or MS Excel. 
 
2.2. Simulation tool 
Within the framework any simulation tool can be applied. Although it is part of the 
framework, it is independent of the solver and the frameworks GUI to maintain a 
standardized working flow within the tool. Precondition for the usage of a software as 
“simulation tool” in the sense of the framework is a suitable remote access. The given 
minimum requirements are that at least the necessary input parameters may be changed 
externally (e.g. by manipulation of a project file), a simulation can be automatically 
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started and run without any user input (e.g. run by a shell command) and the solution 
parameters can be read from the finished simulation (e.g. read from an output file). 
 
2.3. Interface 
The communication interface is the main part of the framework. It establishes the high 
flexibility for the setup of simulations since any required external program call 
supported by the simulation tool is executable. There are no restrictions concerning the 
type of variables. Even parameters changing the simulation structure are possible. 
 
The communication interface, like the solver-algorithm, is implemented in VBA. It is 
completely freely programmable. This assembly offers a wide range of possibilities. 
Besides optimizations of a single process it is quite easy to set up more complex 
scenarios. For example the sequential usage of different simulation programs is 
imaginable to combine separately developed process elements in a plant wide 
optimization. Another example is the simultaneous optimization of more then one 
simulation dependent on the same input parameters as shown in case study one. 
 
To fulfill the request of a user-friendly GUI it is possible to build graphical 
communication interfaces for different programs without the loss of flexibility. For the 
industrial standard process engineering programs Aspen Plus and Aspen Custom 
Modeler suitable graphical communication interfaces were developed and can be used 
for a fast and easy setup of optimizations. For usage of the chemical engineering 
program Presto Kinetics a similar interface was set up. 

3. Case studies – examples of successful application 
The optimization framework has already been successfully applied to multiple 
optimization tasks. In this contribution two of them will be presented. First is a single-
objective optimization from our industrial partners (Evonik Degussa GmbH and Evonik 
Oxeno GmbH) for the determination of complex intrinsic kinetics. The second one 
concerns a multi-objective optimization of a multi-vessel batch distillation. 
 
3.1. Determination of intrinsic kinetics 
The first case study considers a single-objective non-linear global optimization for the 
determination of complex intrinsic oligomerization and isomerization kinetics based on 
a multitude of measurements at different process parameters. It was performed in a 
survey of our industrial partners the Evonik Degussa GmbH and Evonik Oxeno GmbH. 
For simulations a steady-state model realized in Presto Kinetics was applied. Next to the 
actual intrinsic kinetics it incorporates the description of several physicochemical 
mechanisms as for example catalyst activity, inhibition or different reaction pathways. 
 
The optimization task was set up using a least square formulation as objective function, 
validating the model versus measurements. In one run measurements of up to ten 
different operating conditions varying in temperature, pressure, reactant concentration 
and the properties of the catalyst fixed-bed were optimized simultaneously. The 
objective function is directly dependent on the measured (wM,i) and calculated (wi) mass 
fractions. Whereas, the calculated mass fractions are dependent on activation energy, 
pre-exponential factor, inhibition constants, distribution constants etc. which will be 
summarized in the mathematical formulations by x . Additionally the set up task is 
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constrained by boundary conditions g , the reaction model, and h , parameter 
boundaries, to a priori exclude physicochemical improper model parameterizations. The 
optimization problem can be formulated as follows: 
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where n is the number of simultaneously optimized operation conditions and i the 
number of measured data points at each operation condition. For the optimization task a 
communication interface was set up. It is based on an application object provided by 
Presto Kinetics offering routines to read and write parameters and to run the model. To 
automatically assign the measured data to Presto Kinetics, the communication interface 
includes routines to create the required data files for the model. Additionally the 
capability for the sequential run of a predefined number of simulations was 
implemented. 
 
The result of the optimization is a set of model parameters independent of the process 
conditions. With these parameters a multitude of measured data can be described 
reliably. In Figure 2 an example of measured data and the appropriate calculated 
profiles along the fixed bed length is shown. It can be seen that the optimization setup in 
the framework is well capable of finding a sufficient set of model parameters, 
incorporating the boundary condition of a physicochemical acceptable model. 
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Figure 2: Reactant and product mass fraction profiles along the fixed-bed. 
 measured data point: X; calculated profile: — 
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3.2. Design and control of multivessel batch distillation 
The second case study discusses the multi-objective mixed-integer dynamic 
optimization of a middle vessel batch distillation column. For that purpose a rigorous 
process model in Aspen Custom Modeler by Gruetzmann and Fieg considering the 
start-up phase of the process was used [6].  
 
The objective was to perform an optimization of investment (IC) and operation costs 
(OC) for an investment decision. To overcome the problem of an a priori decision for 
the tradeoff between IC and OC a multi-objective optimization was performed. 
Whereas, OC is a function of time dependent operation parameters Ou while IC is a 
function of design parameters Du . The simulation is additionally constrained by a given 
demand of purity. A mathematical formulation of the optimization task can be written as 
follows: 
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where g is the dynamic process-model, x&  and x  are the time dependent and 
independent state variables and w is the mass fraction of a component. 
 
For the optimization a communication interface based on the Aspen Custom Modeler 
application object was implemented. The interface incorporates reading and writing of 
parameters, remote control for running the simulations including full error handling and 
routines for the manipulation of the simulation structure (e.g. creation of additional 
internal tasks). An interaction structure of the framework including the Aspen custom 
Modeler communication interface is given in Figure 3. 
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Figure 3: Interaction structure of the optimization framework including ncsMDE-Aspen Custom 

Modeler communication interface 
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In the case study an industrial scale distillation column for the separation of a mixture of 
400 kg each of hexanol, octanol and decanol subject of product purity of at least 99 % 
was performed. In order to assure a reasonable vapor load, the reboiler duties has been 
set to 200 kW. 
 
Illustrated in Figure 4 are the pareto-optimal solutions, that are the best tradeoffs 
between OC and IC. Shown is generation 2163 this is when the optimization was 
aborted since no further improvements could be achieved. Also shown are second best 
(2. Front) and third best (3. Front) tradeoff solutions along with a front of reference 
points calculated using a temperature control. In the second diagram of Figure 4 the 
solver efficiency is shown by means of mean violation of constraints. Started at high 
constraint violations due to the randomly chosen initial values, constraint violation is 
rapidly decreasing. This once again shows the effectiveness of the solver and the 
framework. 
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Figure 4: pareto-optimal solutions of case study two and efficiency of optimization 

4.  Summary and Conclusions 
In this contribution, for the first time, a sophisticated framework incorporating a user-
friendly graphical user interface combined with a robust solver for arbitrary 
optimization tasks has been presented. In two highly differing case studies the 
efficiency of the framework could be shown. The framework or more precisely the 
communication interface was easily adapted for different programs and various 
structural setups. The used evolutionary algorithm was shown to reliably solve single- 
and multi-objective optimization tasks including mixed integer non-linear tasks as well 
as mixed integer dynamic optimizations. The presented framework is a reliable and easy 
to handle tool for the application on further optimization tasks.  
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