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Abstract 
Piecewise under- and overestimators that rely on mixed-integer linear programming 
(MILP) have been recently proposed for the global optimization of bilinear program 
(BLP), which is essential for process network synthesis. Modeling is an important 
aspect for piecewise MILP under- and overestimators. Here, we propose a novel class of 
models, called as hybrid models. We also extend the modeling approach from univariate 
partitioning to bivariate partitioning. A case study using a benchmark process network 
synthesis problem shows several interesting results. 
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1. Introduction 
Process network synthesis deals with the generation of alternative flowsheets and the 
selection of an alternative whose configuration and parameters best satisfy a given 
criterion which is commonly economic and / or technical in nature. One effective tool 
for process network synthesis is the so-called superstructure [1] where a number of 
process design alternatives are represented as a network of interconnected arcs and 
nodes. Later, this graphical representation is transformed into a mathematical program. 
In many cases, the resulting mathematical program contains nonconvexity in order to 
model the complex interaction within the process. This property makes the 
mathematical program not only hard to solve to global optimality, but also difficult to 
even locate a feasible solution. 
One of the most recurring nonconvex terms in process network synthesis problems is 
the bilinear term. A bilinear term comes from the product of two continuous variables 
from different variable sets (e.g. flow rates and compositions) and becomes linear when 
one of the variables involved is fixed. Bilinear process network synthesis is a process 
network synthesis problem in which the nonlinear terms arise solely from the bilinear 
terms and thus is a BLP. The common approach [2] to obtain the global optimal 
solution of this nonconvex program requires that every occurrence of the bilinear term 
xy over the rectangle xL ≤ x ≤ xU ,  yL ≤ y ≤ yU is substituted by an additional variable z 
bounded by convex underestimators [Eq. (A-1) - (A-2)] and concave overestimators 
[Eq. (A-3) - (A-4)] representing the convex envelope [3, 4]. The resulting problem is a 
linear program (LP), called as LP relaxation, whose solution provides a lower (upper) 
bound for the global minimum (maximum) solution. 

L L L Lz x y x y x y≥ ⋅ + ⋅ − ⋅  (A-1) U U U Uz x y x y x y≥ ⋅ + ⋅ − ⋅  (A-2) 
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L U L Uz x y x y x y≤ ⋅ + ⋅ − ⋅  (A-3) U L U Lz x y x y x y≤ ⋅ + ⋅ − ⋅  (A-4) 

A recent advance has been to utilize an improved version of this convex envelope via ab 
initio partitioning of the search space using binary variables, called as piecewise MILP 
relaxation. Such a relaxation has been shown to be able to improve the relaxation 
quality and computational efficiency of certain global optimization algorithms in 
solving several process network synthesis problems [5-7]. One key issue is the 
modeling aspect of the piecewise MILP under- and overestimators which determines the 
computational effort required to solve the piecewise MILP relaxation problem. This 
aspect is crucial since the piecewise MILP relaxation is typically solved repeatedly and 
is reported as the most time consuming step. Wicaksono and Karimi, 2007 [8] 
developed several novel competitive models and compared them with existing models 
using several case studies. They further studied the properties of piecewise MILP under- 
and overestimators within a two-level-relaxation framework as well as presented several 
important insights and theoretical results. However, all the existing works [5-8] have 
focused on partitioning the search space on the domain of one variable set (either x or 
y), called as univariate partitioning. Bivariate partitioning, which partitions the search 
space on both variable sets (both x and y), has not been addressed so far and offers 
advantages as shown and discussed later. 
In this work, we first propose another class of piecewise MILP under- and 
overestimators which combine the attractive properties of models presented by 
Wicaksono and Karimi, 2007 [8]. Furthermore, we propose several novel models for 
bivariate partitioning. We compare the computational performance of these models 
using a benchmark case study of non-sharp distillation column sequencing. We analyze 
the results using two-level-relaxation framework introduced by Wicaksono and Karimi, 
2007 [8]. 

2. Univariate Partitioning 
In univariate partitioning, only the search space of one set of variable x involved in 
bilinear terms xy is divided into M segments through the introduction of grid points 
a(m) [xL = a(1) < ... < a(M + 1) = xU; d(m) = a(m + 1) – a(m)] while the search space of 
other set y remains intact. Previous works have used univariate partitioning exclusively 
in their works [5-8]. Wicaksono and Karimi, 2007 [8] developed, compared, and studied 
various models for univariate partitioning. Their modeling approaches can be classified 
into three classes: big-M, convex combination, and incremental cost. They showed that 
big-M models exhibit poor 2nd level relaxation quality and thus are likely not 
competitive for piecewise MILP under- and overestimators due to the nature of the 
problem in which the feasible region of each disjunct is disjoint to each other. On the 
other hand, convex combination and incremental cost models offer better 2nd level 
relaxation quality which represent the convex hull. 
2.1. Big-M and Hybrid Models 
In this work, we propose a novel model which is a hybrid model. This novel hybrid 
model H-1 does not require additional continuous variables as in a pure big-M model B-
1. However, it exhibits tighter 2nd level relaxation quality resembling those representing 
the convex hull. H-1 is obtained by augmenting B-1 [Eq. (B-1) - (B-8)] with the 
continuous convex envelope [Eq. (A-1) - (A-4)] over the rectangle xL ≤ x ≤ xU ,  yL ≤ y ≤ 
yU. BM is a sufficiently large number required. In this sense, big-M constraints convey 
the disjunctive logic of partitioning the search space while the convex envelope over the 
entire region promotes the 2nd level relaxation quality. We argue that this model has a 
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relation with the lift-and-project method proposed by Balas, 1998 [9]. However, the 
cuts describing the hull are not obtained via expensive lift-and-project. Inspiration for 
such a formulation is drawn from the results of Wicaksono and Karimi, 2007 [8]. 
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2.2. Incremental Cost Model 
In order to compare the computational performance of the proposed hybrid model, we 
use one of the models from Wicaksono and Karimi, 2007 [8]. This model I-1 belongs to 
the class of incremental cost models and comprises of Eq. (C-1) - (C-9). I-1 requires 
additional non-negative continuous variables Δu(m) and Δwx(m). 
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3. Bivariate Partitioning 
Unlike the univariate partitioning, bivariate partitioning divides the search space of both 
sets of variables x and y respectively into M and N segments via the introduction of grid 
points a(m) and b(n) [xL = a(1) < ... < a(M + 1) = xU ; dx(n) = a(m + 1) – a(m) and  yL = 
b(1) < ... < b(N + 1) = yU; dy(n) = b(n + 1) – b(n)]. To our knowledge, such a model has 
not been reported in the literature. Here, we introduce such a model using the newly 
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proposed hybrid approach and extend the incremental cost model already proposed by 
Wicaksono and Karimi, 2007 [8] to use bivariate partitioning. 
3.1. Big-M and Hybrid Models 
Extension of the hybrid model to bivariate partitioning H-2 is obtained by introducing 
another set of binary variables representing segments in y. H-2 contains Eq. (A-1) - (A-
4), (B-1) - (B-4), and (D-1) - (D-8). Without Eq. (A-1) - (A-4), H-2 reduces to B-2. 
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3.2. Incremental Cost Model 
The extension of incremental cost model to bivariate partitioning I-2 is obtained in a 
similar fashion. I-2 contains Eq. (C-1) - (C-2), (C-4) - (C-6) and (E-1) - (E-9). I-2 
requires additional non-negative continuous variables Δu(m), Δv(n), and Δwxy(m,n). 
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4. Case Study 
Numerical study provides insight into the actual computational performance of the 
proposed models. In this study, we use a benchmark process network synthesis problem 
from Floudas et al., 1999 [10]. It is a non-sharp distillation column sequencing problem 
which was formulated in the form of a BLP with 24 variables, 18 constraints, and 12 
bilinear terms. In addition, the upper bounds on all flow rate variables are contracted to 
180 Kgmol/h and the lower bounds for the flow rate of stream 18 is contracted to 10 
Kgmol/h without cutting off the reported global optimal solution.  
The six models mentioned before (i.e. B-1, H-1, I-1, B-2, H-2, I-2) were run to solve 
the problem in the platform of Dell Precision PW690 workstation with 3 GHz Intel 
Xeon single processor, 64 GB RAM, and Windows XP Professional x64 as operating 
system. LP and MILP problems were solved using GAMS 22.2 / CPLEX 10. Relative 
gap tolerance was set to zero in order to ensure solution optimality. The value of BM is 
set to (xU - xL) (yU - yL). Different sets of grid points are generated using the formula 
presented in Wicaksono and Karimi, 2007 [8] with various values of α and β for 
variables set x and y, respectively. In all cases involving bivariate partitioning, α is set to 
be equal to β. Piecewise Gain (PG) and Relaxed Piecewise Gain (RPG) respectively 
compare the bounds on the global optimal solution obtained from the 1st and 2nd level 
piecewise MILP relaxations versus that from LP relaxation [8]. 
Bivariate partitioning was done with 12 segments on each flow rate and composition. 
Such a number was chosen since it gives an interesting result regarding global 
optimality as discussed later and provides easier benchmarking. For a fair comparison, 
univariate partitioning was done with 20 segments on flow rate and 30 segments on 
composition. The additional segments are used to compensate for the absence of 
simultaneous partitioning in flow rate and composition involved in bilinear terms. Thus, 
all case studies use the same number of total segments. 

5. Results and Discussion 
In all cases tested (see Table 1 and Table 2), the pure big-M perfoms much worse than 
other models in terms of computational time. It is clear that the novel hybrid model is 
more competitive than the pure big-M model due to the enhanced 2nd level relaxation 
quality. Although quite competitive with an instance of incremental cost models in 
several examples, the hybrid model does not perform faster in bivariate partitioning case 
tested. This issue requires further study. The incremental cost model requires one less 
binary variable to model the same number of segments in one domain as compared to 
other models. Consequently, the use of bivariate partitioning reduces further the number 
of binary variables in incremental cost models. Note that in this study, incremental cost 
models require 114, 116, and 110 binary variables for univariate partitioning on flow 
rate, univariate partitioning on composition, and bivariate partitioning, respectively. 
Other models require 120 binary variables for both univariate and bivariate partitioning. 
For all cases, it was found that PG ≥ 0 and RPG ≤ 0. Moreover, RPG < 0 for big-M 
models, RPG = 0 for incremental cost and hybrid models, and PG is independent of 
model. All these results are in line with those of Wicaksono and Karimi, 2007 [8] 
suggesting the generality of such results as they apply not only for univariate 
partitioning but also for bivariate partitioning. Results in this study show that the 
bivariate partitioning give higher PG than univariate partitioning for equivalent numbers 
of segments and grid points positioning. In fact, the 1st level optimal solution obtained 
via bivariate partitioning for α = β = 1 is equal to the global optimal solution reported by 
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Floudas et al., 1999 [10]. Thus, the corresponding PG represents the maximum 
attainable PG (PGmax) for this case, i.e. 0.458. Obviously, the advantage of obtaining 
higher PG is balanced by the increase of computational cost. Thus, an efficient use of 
such a method requires more study. 

Table 1. Computational results for univariate partitioning 

model α PG RPG CPU s model α PG RPG CPU s 

flow rate M = 20 composition M = 30 

B-1 1.00 0.205 -0.218 1.453 B-1 1.00 0.394 -0.220 3.875 

 1.50 0.296 -0.219 5.624  1.50 0.374 -0.220 2.125 

H-1 1.00 0.205 0 0.406 H-1 1.00 0.394 0 0.656 

 1.50 0.296 0 0.828  1.50 0.374 0 0.312 

I-1 1.00 0.205 0 0.765 I-1 1.00 0.394 0 1.203 

 1.50 0.296 0 0.749  1.50 0.374 0 0.765 

Table 2. Computational results for bivariate partitioning (M = N = 12) 

model α = β PG RPG CPU s 

B-2 1.00 0.458 -0.220 6660.176 

 1.50 0.443 -0.220 5670.135 

H-2 1.00 0.458 0 2019.112 

 1.50 0.443 0 3339.869 

I-2 1.00 0.458 0 17.812 

 1.50 0.443 0 11.234 

6. Conclusion 
The novel hybrid model, without any additional continuous variables, exhibits stronger 
2nd level relaxation and performs faster than the big-M model, although it does not 
outperform one instance of the incremental cost model in the reported case study. The 
case study results suggest that the bivariate partitioning can provide better 1st level 
relaxation quality than the univariate partitioning. Some properties on PG and RPG hold 
for both the univariate and bivariate partitioning. 
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