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Abstract

In this paper a constrained nonlinear model predictive control (CNMPC) based
on deterministic global optimisation is designed. The approach adopted consists
in the transformation of the dynamic optimisation problem into a nonlinear
programming (NLP) problem using the method of orthogonal collocation on
finite elements. Rigorous convex underestimators of the nonconvex NLP
problem are then derived within a spatial branch-and-bound method and solved
to global optimality. The resulting control is compared to the CNMPC based on
local optimisation in the control of a single-input single-output (SISO)
continuous stirred tank reactor where a set of consecutive and parallel reactions
take place.
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1.Introduction

The interest of global dynamic optimisation is constantly growing mainly in
security analysis of processes, state observation, parameter estimation and
model based predictive control. Despite the increasing interest, deterministic
global methods have not been extensively investigated. Very few academic
research contributions including experimental studies and numerical simulations
have been recently published in the open literature. This is mainly due to the
lack of methods that allow the construction of rigorous convex underestimators
for nonlinear differential constraints. One class of approaches that can be
applied to solve dynamic optimisation problems to global optimality consists in
the discretisation of variables in order to transform the problem into a nonlinear
programming (NLP) problem. This means that in the process dynamic models,
described by systems of ordinary differential-algebraic equations (DAEs), both
the state and control variables are discretised (known as complete
discretisation). The well-established global static optimisation algorithms,
mainly deterministic methods, can then be used.

The approach proposed in this paper belongs to this class and uses the
orthogonal collocation method on finite elements [1, 2, 3] to convert the DAEs
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into a set of algebraic constraints. The objective here is the design of
constrained nonlinear model predictive control (CNMPC) based on global
optimisation. The case study is a single-input single-output (SISO) continuous
stirred tank reactor involving a set of consecutive and parallel reactions.

1.1.0pen-loop optimal control problem
Consider a deterministic optimal control problem in Bolza form on a fixed
horizon ? €[to.?r] with

min J = G(x(t,) + TF(x(®), u()d

st. x=f(x,u), x(0)=xy (1)

h(x (¢),u(z)) =0, gx(),u(r))=<0,
xt<x(t)<xV, uf<u(@)<u?

where J represents the objective function (this comprises G , the component of
the objective function evaluated at final conditions, and ¥, the component of
the objective function evaluated over a period of time. In the case of tracking
problems the functional £ under the integral may be given by an appropriate
norm of the difference between the reference trajectory and the output
trajectarv guch as a weighted Euclidean norm with the particular weighting
Q.| X||%)), f is a vector valued fimction, X(t) € R™ the state variables with
constant initial conditions Xo, u(t) e R™ the sequence of control variables, h
and & represent some equality and inequality constraints imposed to the
process.

1.2.NLP Formulation-Collocation Based Approach

One class of approaches that can be applied to solve dynamic optimisation
problems such as problem (1) is total discretisation (TD) or total
parametrisation (TP) method [2, 3]. It transforms the original optimisation
problem (1) into a NLP by parameterising both input and state variables over
finite elements using polynomials (e.g., Lagrange polynomials) or any suitable
basis functions. The coefficients of these polynomials and the length of the
finite elements then become the decision variables in the resulting NLP
problem. Following the procedure in [4] for a given approach the complete
formulation can be written as

min J(z)
st. h(z)=0, gz)<0, 2)
zt <z<zY

where Z is a vector of decision variables, h and & represent the equality and
inequality constraints (both linear and nonlinear) resulting from the
discretisation approach. Problem (2) can be solved using any standard nonlinear
programming solver.
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It is important to notice that the NLP problem (2) exhibits multiple local optima
mainly due to the nonlinearity of equations h and &. Methods for
determination of the global optimum are therefore needed.

1.3.Global Solution

Here only deterministic methods for global optimisation are considered. They
are based on the generation of convex relaxations of the original non-convex
problem (2). Numerous methods have been proposed for constructing such
relaxations [5-9]. In this work, the branch-and-bound method [5, 6, 10, 11] is
exploited to guarantee the global optimality within e-tolerance to the solution of
the non-convex NLP problem (2).

The branch-and-bound algorithm begins by constructing a relaxation of the
original non-convex problem (2). This relaxation is then solved to generate a
lower bound on the performance index. An upper bound is generated by the
value of the non-convex objective function at any feasible point (e.g., a local
minimum found by standard NLP algorithm, or a problem (2) evaluation at the
solution of the relaxed problem). If these bounds are not within some &-
tolerance a branching heuristic is used to partition the current interval into two
new sub-problems (e.g., bisect on one of the variables). Relaxations can be
constructed on these two smaller sets, and lower and upper bound can be
computed for these partitions. If the lower bound on a partition is greater than
the current best upper bound, a global solution cannot exist in that partition and
it is excluded from further consideration (fathoming). This process of
branching, bounding and fathoming continues until the lower bound on all
active partitions is within e-tolerance of the current best upper bound.

2.Case Study

2.1.Problem Formulation

In this work we consider a benchmark control problem of the isothermal
operation of a continuous stirred tank reactor (CSTR) where the Van de Vusse
reactions take place [12, 13] (i.e. A—=>B—>C and 2A — D). The performance
index is defined as the weighted sum of squares of errors between the setpomt
C]S_a,e and the e<timated model outnnt Cr predicted for the kt time <ten 1n the
future with W(t)=0.01 for all k#Hy and w(t)=10,000 for k=H, The
control problem is then formulated as

min J= p W(tk)(cset(tk)_éB(tk))z

caLc,F 1V k=1
dCA )

S.t. p =(F/V)(CAO—CA)—k10A —k3CA (3)
d

;B = kiea —kacy — (F/V)en

where F is the feed flow rate of A into the reactor, V' is the constant reactor
volume, €a and CB are the reactant concentrations in the reactor, and ki are ‘rh]P
reaction rate constants for the three reactions. In this work, %1 =50h
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k> =100 h_l, k3 =101mol h"' We assume that the volume of the reactor is
constant, that the feed consists of mire comnonent A | and that the nominal
concentration of A in the feed i« ¢a0 =10 moll' ~ Ap upper bound on the input
(F/V) is assumed to be set at 200 h™' The objective of NMPC is to regulate the
concentration of the product B in the isothermal operation of the CSTR by
manipulating the control variable (F/V) in the presence of disturbance d which
will be simulated through chanoes in Cao. The objective function is minimised
over the future time horizon 1, (equal to 30 sampling times) with » sampling
time of 0-002h (725). At each sampling time % , measurements €5 are taken
from the perturbed plant and output disturbance is estimated as

d(ty)=cg™ (te) —ca(t) “

where ¢8(%) is the model output at time 7. The updated disturbance is then
assumed to be constant in dynamic optimi<ation over the whole prediction
horizon. Therefore, the estimation of ¢B() in the performance index is
calculated as

cp()=ca@O)+d(te), t21; (5)

Once the solution of the dynamic optimisation problem is found (with 8
collocation points for state variables, and considering the control variable as
piecewise constant within 1 element with a length of 0.06h which is the
prediction horizon), the computed optimal input within the first sampling period
is applied both to the actual plant and to the model. The whole procedure is
repeated with the moving horizon strategy in each sampling instant.

2.2.Closed- loop results

The results obtained in the closed-loop control are summarised in Fig. 1 where
five time varying curves are presented. The first nne is the controlled variable
(c) , the second is the innyt or control variable (F1V) , the third is the feed
concentration change (€a0), the fourth is the performance index (or objective
function) and the last one is the computational time required to get the solution.
It should be noted that it happens to the system under consideration to exhibit a
steady-state input multiplicity and thus several solutions. This point is well
discussed in [12].
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Figure 1: Closed-loop results obtained with local and global optimisation

In order to demonstrate the benefits of the global optimisation method over the
local optimisation, setpoint transitions to track and disturbance loads to reject
are generated a< follows. The setnnint transitinns are obtained by <tennino the
. S¢ - . -

concentration €' from 1.1 to Imoll™ at time 0-05h and then to 0.8moll™ g4
time (first curve in Fig. 1). In the same way the disturhance Inads are
simnlated by ~hanoing the feed concentration €ao from 10 to 9moll™ at time
0.2h gpd to 7moll™ at time 0-35h (third curve in Fig. 1).

The global optimisation method leads to two sienificant imnravements in
setpoint tracking visihle at setpoint changing times 0.05h ang 0.5h In the first
change, at time 0.05h  the global algorithm chnancec to use an offset free
position corresponding to an input value of £'/V =25 h! (second curve in Fig.
1). The local technique is helpless as it finds the problem to be locally
infeasible, forcing the relaxation to the hard terminal constraint and chnnceg to
move in an improving direction and ends on the constraint £ /7 =200 h™ In
this case the global method leads to significantly lower performance index than
the local one (fourth curve in Fie 1),

In the second change, at time 0.5h | the locally tuned controller ic ahle ta track
the setpoint offset free without issue using an input value of F/V = 29.9h",
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On other hand, the globally tuned controller finde a better solution choosmg the
opposite steady state input value of F/V=185h"" (second curve in Fig. 1).
This gives a better setpoint tracking behaviour.

Concerning the time required to compute a solution (fifth curve in Fig. 1), in
most cases the global solver is able to guarantee the global optimality within the
samnling period of 7-28. However, it should be mentioned, that at time of
0.35h the solver can no longer achieve the desired setpoint due to a large
disturbance. At this point, guaranteeing the global solution takes much more
time than in previous cases and the solution is returned too late to be used for
real-time purposes (within 7-28). In this time instant, the best local solution is
implemented and thus the guarantee on global optimality is lost. For the global
optimisation method used to design the CNMPC the increase of the
computation capacities or the decrease of the global optimum accuracy would
probably guarantee the global optimality of the computed control.

3.Conclusions

A globally optimal NMPC algorithm has been proposed. A deterministic
approach is used to find the guaranteed global optimum to the nonconvex NLP
problem resulting from the simultaneous optimisation method. The algorithm
has shown its capabilities to eliminate the poor performance in a simple CSTR
example resulting from the suboptimal input trajectories obtained by local
optimisation techniques. It has been shown, that with growing computational
capabilities, the global CNMPC may be used also in real-time applications.

Reference:

[1] J.E. Cuthrell and L.T. Biegler, AIChE Journal, 33 (1987) 1257

[2] J.E. Cuthrell and L.T. Biegler, Comput. Chem. Eng., 13 (1989) 49

[3]J.S. Logsdon and L.T. Biegler, Chem. Eng. Sci., 28 (1989) 1628

[4] W.R. Esposito and C.A. Floudas, Ind. Eng. Chem. Res., 39 (2000) 1291

[5] C.S. Adjiman and S Dallwing and C.A. Floudas and A. Neumaier, Comput.
Chem. Eng.. 22 (1998) 1137

[6] C.S. Adjiman and I.P. Androulakis and C.A. Floudas, Comput. Chem. Eng.,
22 (1998) 1159

[7] B. Chachuat and M.A. Latifi, “User’s guide for Fortran global optimization
code NLPGLOB”, 2002

[8] J.E. Falk and R.M. Soland, Manage. Sci., 15 (1969) 550

[9] G.P. McCormick, Math. Program., 10 (1976) 147

[10] W.R. Esposito and C.A. Floudas, J. Global Optim., 17 (2000) 97

[11] W.R. Esposito and C.A. Floudas, J. Global Optim., 22 (2002) 59

[12] C.E. Long and P.K. Polisetty and E.P. Gatzke, J. Proc. Cont., 16 (2006)
635

[13] P.B. Sistu and B.W. Bequette, Chem. Eng. Sci., 50 (1995) 921



