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Abstract 
In this paper a constrained nonlinear model predictive control (CNMPC) based 
on deterministic global optimisation is designed. The approach adopted consists 
in the transformation of the dynamic optimisation problem into a nonlinear 
programming (NLP) problem using the method of orthogonal collocation on 
finite elements. Rigorous convex underestimators of the nonconvex NLP 
problem are then derived within a spatial branch-and-bound method and solved 
to global optimality. The resulting control is compared to the CNMPC based on 
local optimisation in the control of a single-input single-output (SISO) 
continuous stirred tank reactor where a set of consecutive and parallel reactions 
take place. 
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1.Introduction 
The interest of global dynamic optimisation is constantly growing mainly in 
security analysis of processes, state observation, parameter estimation and 
model based predictive control. Despite the increasing interest, deterministic 
global methods have not been extensively investigated. Very few academic 
research contributions including experimental studies and numerical simulations 
have been recently published in the open literature. This is mainly due to the 
lack of methods that allow the construction of rigorous convex underestimators 
for nonlinear differential constraints. One class of approaches that can be 
applied to solve dynamic optimisation problems to global optimality consists in 
the discretisation of variables in order to transform the problem into a nonlinear 
programming (NLP) problem. This means that in the process dynamic models, 
described by systems of ordinary differential-algebraic equations (DAEs), both 
the state and control variables are discretised (known as complete 
discretisation). The well-established global static optimisation algorithms, 
mainly deterministic methods, can then be used.  
The approach proposed in this paper belongs to this class and uses the 
orthogonal collocation method on finite elements [1, 2, 3] to convert the DAEs 
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into a set of algebraic constraints. The objective here is the design of 
constrained nonlinear model predictive control (CNMPC) based on global 
optimisation. The case study is a single-input single-output (SISO) continuous 
stirred tank reactor involving a set of consecutive and parallel reactions. 
 
1.1.Open-loop optimal control problem 
Consider a deterministic optimal control problem in Bolza form on a fixed 
horizon ],[ 0 fttt∈  with 
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where J  represents the objective function (this comprises G , the component of 
the objective function evaluated at final conditions, and F , the component of 
the objective function evaluated over a period of time. In the case of tracking 
problems the functional F  under the integral may be given by an appropriate 
norm of the difference between the reference trajectory and the output 
trajectory, such as a weighted Euclidean norm with the particular weighting 
Q : 2|||| Qx ), f  is a vector valued function, xnRt ∈)(x  the state variables with 
constant initial conditions 0x , unRt ∈)(u  the sequence of control variables, h  
and g  represent some equality and inequality constraints imposed to the 
process. 
 
1.2.NLP Formulation-Collocation Based Approach 
One class of approaches that can be applied to solve dynamic optimisation 
problems such as problem (1) is total discretisation (TD) or total 
parametrisation (TP) method [2, 3]. It transforms the original optimisation 
problem (1) into a NLP by parameterising both input and state variables over 
finite elements using polynomials (e.g., Lagrange polynomials) or any suitable 
basis functions. The coefficients of these polynomials and the length of the 
finite elements then become the decision variables in the resulting NLP 
problem. Following the procedure in [4] for a given approach the complete 
formulation can be written as 
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where z  is a vector of decision variables, h  and g  represent the equality and 
inequality constraints (both linear and nonlinear) resulting from the 
discretisation approach. Problem (2) can be solved using any standard nonlinear 
programming solver. 
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It is important to notice that the NLP problem (2) exhibits multiple local optima 
mainly due to the nonlinearity of equations h  and g . Methods for 
determination of the global optimum are therefore needed. 
 
1.3.Global Solution 
Here only deterministic methods for global optimisation are considered. They 
are based on the generation of convex relaxations of the original non-convex 
problem (2). Numerous methods have been proposed for constructing such 
relaxations [5–9]. In this work, the branch-and-bound method [5, 6, 10, 11] is 
exploited to guarantee the global optimality within ε-tolerance to the solution of 
the non-convex NLP problem (2). 
The branch-and-bound algorithm begins by constructing a relaxation of the 
original non-convex problem (2). This relaxation is then solved to generate a 
lower bound on the performance index. An upper bound is generated by the 
value of the non-convex objective function at any feasible point (e.g., a local 
minimum found by standard NLP algorithm, or a problem (2) evaluation at the 
solution of the relaxed problem). If these bounds are not within some ε-
tolerance a branching heuristic is used to partition the current interval into two 
new sub-problems (e.g., bisect on one of the variables). Relaxations can be 
constructed on these two smaller sets, and lower and upper bound can be 
computed for these partitions. If the lower bound on a partition is greater than 
the current best upper bound, a global solution cannot exist in that partition and 
it is excluded from further consideration (fathoming). This process of  
branching, bounding and fathoming continues until the lower bound on all 
active partitions is within ε-tolerance of the current best upper bound.  

2.Case Study 

2.1.Problem Formulation 
In this work we consider a benchmark control problem of the isothermal 
operation of a continuous stirred tank reactor (CSTR) where the Van de Vusse 
reactions take place [12, 13] (i.e. CBA →→  and DA2 → ). The performance 
index is defined as the weighted sum of squares of errors between the setpoint 

set
Bc  and the estimated model output Bĉ  predicted for the thk  time step in the 

future with 01.0)( =ktw  for all pHk ≠  and  000,10)( =ktw for pHk = . The 
control problem is then formulated as 
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where F  is the feed flow rate of A  into the reactor, V  is the constant reactor 
volume, Ac  and Bc  are the reactant concentrations in the reactor, and ik  are the 
reaction rate constants for the three reactions. In this work, -1

1 h50=k , 
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-1
2 h100=k , -1-1

3 hmoll10=k . We assume that the volume of the reactor is 
constant, that the feed consists of pure component A , and that the nominal 
concentration of A  in the feed is -1

A0 lmol10=c . An upper bound on the input 
(F/V) is assumed to be set at -1h200 . The objective of NMPC is to regulate the 
concentration of the product B  in the isothermal operation of the CSTR by 
manipulating the control variable (F/V) in the presence of disturbance d  which 
will be simulated through changes in A0c . The objective function is minimised 
over the future time horizon pH  (equal to 30 sampling times) with a sampling 
time of h002.0   (7.2s). At each sampling time kt , measurements mes

Bc are taken 
from the perturbed plant and output disturbance is estimated as  

)()()( B
mes
B kkk tctctd −=  (4) 

where )(B ktc  is the model output at time kt . The updated disturbance is then 
assumed to be constant in dynamic optimisation over the whole prediction 
horizon. Therefore, the estimation of )(B tc  in the performance index is 
calculated as  

kk tttdtctc ≥+= ),()()(ˆ BB  (5) 

Once the solution of the dynamic optimisation problem is found (with 8 
collocation points for state variables, and considering the control variable as 
piecewise constant within 1 element with a length of h06.0  which is the 
prediction horizon), the computed optimal input within the first sampling period 
is applied both to the actual plant and to the model. The whole procedure is 
repeated with the moving horizon strategy in each sampling instant. 
 
2.2.Closed- loop results 
The results obtained in the closed-loop control are summarised in Fig. 1 where 
five time varying curves are presented. The first one is the controlled variable 

)( Bc , the second is the input or control variable )/( VF , the third is the feed 
concentration change )( A0c , the fourth is the performance index (or objective 
function) and the last one is the computational time required to get the solution.  
It should be noted that it happens to the system under consideration to exhibit a 
steady-state input multiplicity and thus several solutions. This point is well 
discussed in [12]. 
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Figure 1: Closed-loop results obtained with local and global optimisation 

In order to demonstrate the benefits of the global optimisation method over the 
local optimisation,  setpoint transitions to track and disturbance loads to reject 
are generated as follows. The setpoint transitions are obtained by stepping the 
concentration set

Bc  from 1.1 to -1lmol1  at time h05.0  and then  to 1lmol8.0 −  at 
time h5.0  (first curve in Fig. 1). In the same way the disturbance loads are 
simulated by changing the feed concentration A0c  from 10 to 1lmol9 −  at time 

h2.0 and to 1lmol7 −  at time h35.0  (third curve in Fig. 1). 
The global optimisation method leads to two significant improvements in 
setpoint tracking visible at setpoint changing times h05.0  and h5.0 . In the first 
change, at time h05.0 , the global algorithm chooses to use an offset free 
position corresponding to an input value of -1h25/ =VF  (second curve in Fig. 
1). The local technique is helpless as it finds the problem to be locally 
infeasible, forcing the relaxation to the hard terminal constraint and chooses to 
move in an improving direction and ends on the constraint 1h200/ −=VF . In 
this case the global method leads to significantly lower performance index than 
the local one (fourth curve in Fig. 1). 
In the second change, at time h5.0 , the locally tuned controller is able to track 
the setpoint offset free without issue using an input value of -1h9.29/ =VF . 
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On other hand, the globally tuned controller finds a better solution choosing the 
opposite steady state input value of -1h185/ =VF  (second curve in Fig. 1). 
This gives a better setpoint tracking behaviour. 
Concerning the time required to compute a solution (fifth curve in Fig. 1), in 
most cases the global solver is able to guarantee the global optimality within the 
sampling period of s2.7 . However, it should be mentioned, that at time of 

h35.0  the solver can no longer achieve the desired setpoint due to a large 
disturbance. At this point, guaranteeing the global solution takes much more 
time than in previous cases and the solution is returned too late to be used for 
real-time purposes (within s2.7 ). In this time instant, the best local solution is 
implemented and thus the guarantee on global optimality is lost. For the global 
optimisation method used to design the CNMPC the increase of the 
computation capacities or the decrease of the global optimum accuracy would 
probably guarantee the global optimality of the computed control. 

3.Conclusions 
A globally optimal NMPC algorithm has been proposed. A deterministic 
approach is used to find the guaranteed global optimum to the nonconvex NLP 
problem resulting from the simultaneous optimisation method. The algorithm 
has shown its capabilities to eliminate the poor performance in a simple CSTR 
example resulting from the suboptimal input trajectories obtained by local 
optimisation techniques. It has been shown, that with growing computational 
capabilities, the global CNMPC may be used also in real-time applications.  
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