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Abstract 
There is substantial economic interest to optimize the operations of low-density 
polyethylene (LDPE) tubular reactors. Due to the high complexity of these units, 
systematic optimization techniques need to be used for this. One of the main limitations 
associated to this is the high dimensionality and complexity of the multi-zone tubular 
reactor model. In this work, we demonstrate that a simultaneous full-discretization 
approach coupled to a full-space nonlinear programming (NLP) solver results in an 
efficient strategy to cope with these limitations. We exploit these advantages in the 
analysis of different scenarios arising in the operation of LDPE reactors. In particular, 
we propose a multivariable optimization strategy able to compensate for time-varying 
disturbances in order to keep the reactor temperature profile and final properties of the 
polymer at targets.  Finally, we show that the optimizer can easily be extended to 
incorporate economic decisions in the objective and we illustrate the potential benefits 
and bottlenecks of this approach.  
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1. Introduction 
Low-density polyethylene (LDPE) is often produced in tubular reactors through free-
radical polymerization of ethylene at high pressures (1500-3000 atm) and in the 
presence of peroxide initiators. In addition, a chain-transfer agent (CTAs) is 
incorporated in order to control the polymer melt index. While LDPE processes are 
often highly profitable, there exist multiple factors limiting their performance. The high 
exothermicity of the reactions and the high pressures force the design of long multi-
zone tubular reactors (1-3 km) with thick walls, small inside diameters (6-10 cm) and 
sophisticated jacket cooling systems. A schematic representation of a typical LDPE 
reactor is presented in Figure 1. These designs involve multiple peroxide, monomer and 
CTA side streams distributed along the reactor zones. This gives rise to strong 
multivariable interactions between different phenomena occurring downstream of the 
reactor and leads to complex operating procedures. In addition, the selected operating 
conditions might also promote continuous polymer deposition on the reactor walls 
(fouling)  that further limit the reactor productivity (Buchelli et.al, 2005).    
 
During the last years, several steady-state rigorous models for LDPE tubular reactors 
have been proposed (Kiparissides et.al, 2005). These models usually comprise several 
hundred highly nonlinear differential and algebraic equations (DAE) that describe the 
evolution of the reacting mixture along the reactor. In addition, in most reactor 
arrangements, the zone jackets are operated countercurrently, giving rise to multi-point 
boundary conditions. The resulting model complexity has limited the use optimization 
techniques, especially in on-line applications where fast solutions are required 
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(Asteuasin and Brandolin, 2007). In this work, we propose a full-discretization 
formulation of LDPE tubular reactor models. The strategy is able to handle multi-point 
boundary conditions along the reactor zones. In addition, it allows the use of efficient 
NLP solvers able to solve highly nonlinear problems with many degrees of freedom 
quickly and efficiently. These benefits are exploited in the design of a multivariable 
optimizer for LDPE reactors that can be used for different operating scenarios of 
industrial interest. 
 
 

 
Figure 1. Schematic representation of multi-zone LPDE tubular reactor.  

2. Mathematical Model 

2.1. Model Structure   
In this work, we consider the rigorous model presented in (Zavala and Biegler, 2006). 
The model describes the steady-state evolution of the reacting mixture and of the 
cooling agent along each one of the reactor zones.  The material balance equations have 
the generic form, 
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Where denotes the molar flow rate of component jkF , j at zone k and denotes the 

corresponding net reaction rate varying along the axial position  at each zone.  The 
components present in the mixture are the multiple peroxides contained in the initiator 
feed streams, monomer, comonomer, solvent, chain-transfer agent(s), moments of live 
polymer chains, moments of dead polymer chains,  long-chaing branching and short-
chain branching. Symbols and  denote the number of reactor zones and species 
in the mixture, respectively.  denotes the side stream flowrate of a particular 
component to a particular zone while  denotes the feed stream flowrate of a 

particular component.  Finally,  is the internal cross-sectional area of a given zone, 

 is the corresponding total length.  Symbol 
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feed points which implicitly determine the initial conditions of the zones.   The model 
incorporates energy balances for the reacting mixture along the zones,  
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Where and are the density, velocity and heat capacity of the reacting 

mixture, respectively, which vary along the axial position. Symbol denotes the zone 
diameter. Functions  denote energy balances at the feed points. For the cooling 
agent flowing along the jackets we have the energy balances,  
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where and are the density, velocity and heat capacity, respectively, of the 
cooling agent which vary along the axial position. From (3) notice the presence of 
boundary conditions that dictate the inlet temperature of the cooling agent at the end of 
the reactor zone. The reactor model includes a large number of algebraic equations for 
the calculation of the thermodynamic, physical, and transport properties of the reacting 
mixture and of the polymer molecular properties (molecular weights, branching, melt 
index and polymer density).  The reactor model used in this work contains around 130 
ordinary differential equations and 500 algebraic equations; these are fully described in 
Zavala and Biegler (2006).   
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2.2. Model Uncertainty 
There exists a high degree of uncertainty in the model associated to the heat transfer 
coefficients (HTCs) of the zones, which originates from the time-varying fouling layer 
inside the reactor encountered in industrial operations. It has been so far impractical to 
incorporate mechanistic models to predict this fouling onset (Buchelli, et.al, 2005). A 
typical strategy to get around this limitation consists in parameterizing the HTCs and 
estimating them on-line. The HTCs are estimated to match the reactor temperature 
profile and the jacket temperatures.  In a previous study (Zavala and Biegler, 2006), we 
proposed an on-line estimation strategy able to match the temperature profile accurately. 
The strategy follows a simultaneous all-at-once approach to match the entire reactor and 
jacket temperatures. In Figure 2 we illustrate the resulting match of the reactor 
temperature profile at a particular point in time. 

3. NLP Formulation and Solution 
After embedding the rigorous reactor model to a general objective function and 
inequalities, we obtain a DAE-constrained optimization problem. In this work, the 
optimizer is allowed to manipulate some of the reactor inputs (initiator flows, jacket 
flowrates, CTA flowrates and side feed temperatures) all at once.  The novelty of the 
approach lies on the multivariable all-at-once nature of the strategy which accounts for 
downstream interactions along the reactor. This is in sharp contrast with the current 
industrial practice where individual loops are used to control locally the reactor zones 
peak, inlet and outlet temperatures which complicate the control of the polymer 
properties at the reactor exit. The proposed strategy is expected to decouple these 
control loops and thus obtain better performance.  
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Figure 2. Reactor model match of temperature profile after estimation of HTC and 
initiator efficiencies.  
 
We propose a simultaneous full-discretization approach to solve the DAE-constrained 
problem. A Radau collocation scheme is used in order to incorporate, directly, the 
multi-point boundary conditions. After discretization, we obtain an NLP with around 
13,000 constraints and 71 degrees of freedom. The resulting NLP is very sparse and this 
structure can be exploited using the full-space interior point solver IPOPT. The NLP is 
implemented on the modeling platform AMPL which provides exact first and second 
order derivative information. This information is important in order to handle highly 
nonlinear NLPs.  On average, the NLPs converge in around 10-12 iterations and 15-20 
CPUs on a Pentium IV, 3.0 GHz PC.  

4. Case Studies 

4.1. Tracking Objective Function 
In the first case study, we evaluate the performance of the optimizer for a given 
decaying sequence of the HTC in the reaction zones. This scenario arises during normal 
operation where the HTC drops from its original value after the defouling or cleaning 
stage (Buchelli, et.al, 2005). The simulated decreasing HTC sequence for the reaction 
zones is illustrated in Figure 3. The HTC is ramped linearly from its nominal value 
(value of 1) to less than 40% of its nominal value. The nominal point is obtained by 
matching the reactor model to industrial plant data. The optimizer objective is to react to 
the changing HTCs by manipulating the full set of input variables in order to keep the 
reactor peak temperatures within the protection zones (see Figure2) and the polymer 
properties on target. For confidentiality reasons, all the variables have been scaled using 
their nominal values. The plant response is obtained by perturbation of the heat transfer 
coefficients in the simulation model.  
 
The resulting input profiles of the optimizer are presented in Figure 4.  It is clear that, as 
the HTC decays (i.e., the reactor fouls) the controller can only keep the reactor under 
the desired peak temperature limits by dropping production (-12% in the most fouled 
case). This is normally done by decreasing the initiator flows in the zones 
independently. However, it is interesting to observe that the optimizer decides to move 
only the initiator of the first (Z1) and second (Z2) reaction zones while the flows for Z3 
and Z4 are kept at their nominal values. In Z3 and Z4 the optimizer decides that it is 
more efficient to attenuate the decreasing cooling capacity by decreasing the feed 
temperatures at the mixing points. Also, the optimizer is able to keep the melt index and 
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polymer density always on target despite of the decreased conversion. For this, the 
optimizer drops the CTA side flowrates at the same rate in all zones. From the 
temperature profile, it is possible to observe that the fouling onset is most notable in the 
first reaction zone where the outlet temperature tends to rise; the optimizer manipulates 
the feed temperature to the second reaction zone to keep the inlet temperature of this 
zone at target.  

 
Figure 3. Decaying sequence for heat transfer coefficients along all reaction zones. 

Figure 4. Response of optimizer to decaying sequence of HTCs in reaction zones.  
 
Case 2.2. Tracking Objective Function + Economic Objective 
In this case, we incorporate an additional term in the objective function to maximize 
production. From Figure 5, it is clear that the incorporation of the economic term in the 
objective forces the optimizer to manipulate the inputs in order to attenuate the 
decreased production.  In this case, the optimizer only needs to drop production by 7% 
in the most fouled case (saving 5% compared to first case study). Furthermore, for the 
highest value of the HTC, the optimizer is able to increase production by 3%. 
Interestingly, the optimizer keeps the same trends of the initiator flowrates as in the 
previous case study. In this case, the optimizer overcomes the lost production due to 
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fouling by decreasing the feed temperatures. This increases the temperature difference 
between the inlet and the peak temperatures, thus increasing production. Finally, the 
melt index and density are always kept at target.  For this, the CTA flowrate profiles 
need to be distributed in a different way compared to the previous case study.  It is 
important to emphasize that, even if the multivariable optimizer can attenuate the lost 
production by distributing the inputs more efficiently, it is not able to overcome the lost 
production completely. As expected, this implies that production losses are dominated 
by the fouling effect.  

 
Figure 5. Response of optimizer to decaying sequence of HTCs in reaction zones. Economics 
included in objective function.  

5. Conclusions and Future Work 
In this work, we propose an all-at-once discretization strategy to optimize the operations 
of LDPE processes using first-principles tubular reactor models. It is demonstrated that 
the multivariable strategy can cope rigorously with downstream interactions along the 
reactor and attenuate disturbances in order to follow objectives of industrial interest. As 
part of future work, we will incorporate rigorous dynamic models that will allow for a 
higher fidelity in the analysis.  
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