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Abstract 

Next-generation model-based advanced process control technologies should be centred 

on an architecture that allows the choice of models, solutions methods, control settings 

and optimisation strategies seamlessly. In this work a model-centric platform for 

advanced process control-and-optimisation of industrial manufacturing systems is 

presented, which aims at providing a framework for realising the aforementioned vision. 

This paper discusses the architecture of the dynamic real-time-optimisation (DRTO) 

platform and focuses on the formulation of on-line industrial optimisation-and-control 

problems from an operator viewpoint and its subsequent interpretation into a 

mathematical formalism. The optimal operation of an industrial continuous pulping 

system is examined as a case-study. 

1. Introduction 

For decades, industrial Model Predictive Control (MPC) technology has been based on 

linear empirical models obtained by identification from input-output process data. 

Typically, a discrete-time formulation is adopted, and the control problem is posed as an 

unconstrained optimisation problem with a quadratic-cost objective function. Even 

though applications following this successful technological paradigm will continue to 

deliver gains in conventional APC markets such as refining and petrochemicals, there is 

an increasing interest in nonlinear model-based control-and-optimisation, which is 

expected to meet higher requirements on productivity and quality control due to the 

intrinsic nonlinear nature of industrial manufacturing processes. In the past, however, 

large-scale mechanistic models have seldom been used in advanced model-based 

control systems, with only a few examples resulting from academic studies rather than 

industrial applications (e.g. Wisnewski & Doyle, 2001; Leineweber et al., 2003). 

We envision that flexibility and interoperability may be the key technological 

breakthrough of the next generation of model-based APC systems. For example, such 

an APC engine would allow embedding linear models as easily as linearised or 

nonlinear ones. Similarly, this APC engine would support (semi-)empirical models 

derived from identification- or reduction-based techniques, as well as fundamental 

mechanistic models derived from first principles. At the same time, the APC system 

would allow unconstrained, quadratic cost (MPC-like) optimisation-problem 

formulations or general constrained (RTO-like) ones. Finally, this next-generation APC 

engine would support discrete- and continuous-time formulations interchangeably 

(typical of MPC and RTO formalisms, respectively). Of course, one would not expect 

the form of the optimal control problem to depend on the characteristics of the APC 

application and, therefore, a set of mechanisms to formulate (and subsequently 

interpret) this control problem should be provided to the users. 

In summary, we argue that next-generation APC systems should be founded on a 

domain framework and software platform that allows the interchange of models, 
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solutions methods and control/optimisation settings/strategies, seamlessly. One could 

anticipate that such a framework/platform would enable a transparent comparison of the 

benefits and drawbacks of controller-design choices made at each of these levels. 

In this paper, leveraging on the current functionalities of modern advanced process 

modelling (APM) systems, a model-centric platform for advanced process control-and-

optimization of industrial processing systems is presented. It provides the appropriate 

framework through which the aforementioned research issues can be investigated and 

addressed in a thorough and systematic way. Specifically, we devote our attention to the 

architecture of the DRTO platform and we focus on the formulation of (on-line) 

industrial optimization-and-control problems from an operator/process engineer 

viewpoint and its subsequent interpretation into a mathematical formalism. 

2. Real-Time Optimisation Engine 

2.1. Control Architecture 

The kernel of the DRTO engine attempts to solve a moving finite horizon open-loop 

optimal control problem. Feedback is introduced at the end of the control window and 

the procedure is repeated according to a moving-horizon strategy. The formulation of 

the overall algorithm has been presented elsewhere (Rolandi & Romagnoli, 2005). 

The conventional segregation of the control hierarchy into i) plant-wide steady-state 

optimisation, ii) unit-wide steady-state/dynamic optimisation, iii) dynamic multivariable 

constrained control and iv) regulatory control is a de-facto standard for industrial 

control systems. In this work, rigorous on-line real-time dynamic optimisation directly 

provides the set-points of the regulatory control system, condensing the two 

intermediate optimisation/control layers of a conventional hierarchical control structure 

into a single, consistent model-centric application. 

 
Figure 1. UML diagram of the dynamic RTO engine (DRTOE) software architecture. 

2.2. Software Architecture 

As shown by the UML diagram in Fig. 1, the dynamic RTO engine (DRTOE) software 

application is constructed by composition of several software objects: the process-data 

server (PDS), the modelling-and-solution engine (MSE), the problem-definition 

manager (PDM) and solution-feasibility supervisor (SFS). 

The PDS is a client-side wrapper for an OPC (Historian) Data Access server or similar 

set of objects, interfaces and methods for connectivity to real-time and historical data 

from PLCs, DCSs, and other control devices and automation systems. In brief, the PDS 

software object provides the DRTO engine its on-line connectivity capabilities. 
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2.2.1. Modelling-and-Solution Engine 

The Modelling-and-Solution Engine (MSE) is the component that provides both model-

server services and numerical solution capabilities in a form that is consistent with the 

standard CAPE-OPEN interfaces, so that the implementation of the process model and 

solution methods is delegated to dedicated software objects. This way, the MSE 

provides a high-level abstraction of the modelling and solution functionalities 

demanded by the DRTO kernel. 

In this work, gPROMS has been the MSE of choice: gPROMS is a powerful 

declarative, equation-oriented modelling system that supports the definition of hybrid 

continuous/discrete (HCD) integro-partial-differential-algebraic systems (IPDAEs) of 

arbitrary complexity. gPROMS' internal model representation is exposed to model-

clients through the standard CAPE-OPEN interfaces via an ESO/STN formalism. In 

addition, not only is gPROMS an state-of-the-art model-server (MS) but also an 

advanced, robust and efficient solution engine (SE), since model-based activities 

executed via the gPROMS Server use gPROMS' numerical solution algorithms. These 

include direct sparse linear algebra routines (MA28/MA48), a sparse (Quasi-)Newton 

nonlinear solver (with proprietary block-decomposition and preset-propagation 

algorithms for increased robustness and speed), BDF/IRK implicit integrators (with 

sensitivity evaluations on request, via an augmented-system approach), a SQP-NLP 

solver, as well as single- and multiple-shooting (SS/MS) dynamic optimisation (DO) 

solvers (via a sequential-solution approach). Overall, gPROMS provides all modelling-

and-solution services requested by a general-purpose application like the DRTO engine. 

2.2.2. Event Manager 

The framework upon which the DRTO engine was conceived is centred on the vision of 

translating any possible process control problem (e.g. normal/abnormal operation, 

disturbance rejection, production/grade transitions, etc) into an equivalent dynamic 

optimisation problem formulation. In (semi-)batch and continuous manufacturing 

processes, the nature of the control problem changes inevitably, due to the interaction 

with the surroundings and decision-makers (e.g. operators/control system). Indeed, in 

industrial processing plants, control variables may be “lost” due to hardware or software 

signal failure or unavailable due to direct intervention from the operator or the 

supervisory control system. Similarly, specifications of controlled variables may be 

modified to better represent operational requirements and safety limits. At the same 

time, an ill-conditioned system may arise as a consequence of poor definition of the 

control-problem and/or abnormal process performance, and an adequate modification of 

the input/output configuration could help recovering from this adverse situation. In 

summary, the structure of an industrial control problem will change dynamically. 

Following the initiative adopted in our previous work (Rolandi & Romagnoli, 2005), 

the DRTO engine handles the interaction with external agents (surroundings/decision-

makers) according to the following use case: a) at any given point in time, the operator 

or the control system adds to a list one or more events which encapsulate a desired 

feature of the control problem according to event-specific semantics; b) at any point in 

time, the DRTO kernel interprets the list of  events into a dynamic optimisation problem 

(DOP) that represents the control problem the operator/control system expect to be 

resolved. Next, let us examine the nature of the events currently supported. 

Our experience shows that a dozen or so different types of events are needed to define 

the formulation of typical industrial control problems. The “ObjectiveFunctionChange” 

event-type changes the identity of the objective function (the key performance indicator 

from the perspective of process performance) as well as the nature of the extremisation 

problem (minimisation/maximisation). As their names indicate, the event-types 
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“Prediction-HorizonChange”, “ControlHorizonChange”, “ControlWindowChange” and 

“Number-OfControlIntervalsChange” trigger modifications to the length/number of 

control intervals and length of the control/prediction horizons. In the case of adopting a 

sequential solution strategy of the underlying dynamic optimisation problem (gPROMS' 

approach), these changes are closely related to the control vector parameterisation 

(CVP) formulation which affects the multi-stage finite-dimensional approximation of 

the original infinite-dimensional problem. 

The “ControlChange” event-type is used to specify the identity, bounds and initial guess 

of optimisation (decision) variables, as well as their explicit form of parameterisation 

(piecewise-constant and piecewise-linear are supported). “EndPointConstraintChange” 

and “InteriorPointConstraintChange” event-types are used to set end-point and interior-

point constraints on state/output variables (Vassiliadis et al, 1994a). 

The subset of events above is known as elementary events because they have a direct 

mapping into basic features of the dynamic optimisation problem formulation. In the 

case of gPROMS, this means that these events have a direct representation into the 

gPROMS optimisation-entity language. In our original manuscript (Rolandi & 

Romagnoli, 2005) we suggested the notion of composite events, that is, high-level, non-

trivial even types that can be re-interpreted in terms of lower-level elementary events. In 

this work we introduce two composite events: “PathConstraintChange” and 

“ZoneConstraint-Change”. These event-types, which denote path- and bounded-region-

constraints which are very common in most engineering control/optimisation problem 

of interest, are reformulated internally by the DRTO engine as equivalent interior- and 

end-point constraints (see Vassiliadis et al, 1994b). The introduction of these composite 

events greatly simplifies the definition of industrial control-and-optimisation problems. 

Another novelty of this work is the addition of event-types controlling the scaling of 

constraints and objective function (scaling of decision variables is also performed 

automatically by gPROMS), as well as other numerical aspects of the optimisation 

problem. The events-types, “VariableEnforcementChange”, “PathEnforcementChange” 

and “ZoneEnforcementChange” are used for this purpose: while the former determines 

the degree of accuracy/enforcement of elementary end-point and interior point 

constraints, the second and third types apply to the elementary constraints that result 

from the interpretation of composite-constraint events. Finally, the user is able to 

control other algorithmic features such as the optimisation tolerance and event-time 

tolerance through their corresponding event-types.  

As indicated by Fig. 1, the Event Manager (EM) component of the DRTO kernel is 

responsible for listening-to, parsing and validating individual user-posted events. It is 

expected that in the future this component will make use of validating XML schema and 

will be driven by user-interaction with a GUI. At the moment, events are edited and 

posted as structured plain-text lists. 

2.2.3. Problem Definition Manager 

Multivariable constrained control problems are difficult to pose. Furthermore, they must 

be interpreted into an equivalent dynamic optimisation-problem formulation and, in 

turn, mapped as input arguments to low-level numerical routines or language constructs 

of high-level modelling systems (e.g. gPROMS optimisation-entity language). To the 

best of our knowledge, this is the only system that adopts this overall philosophy. 

The Problem Definition Manager (PDM) is a central element of the DRTO engine. The 

goal of the PDM component is to interpret user-posted events into an optimal-control-

problem formulation, and resolve any conflicting elementary/composite events during 

the interpretation process. The PDM operates in two different modes. If new events are 

posted, or existing events become active (their corresponding event times are smaller 
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than the actual time), the PDM constructs an entirely new problem-definition from 

scratch. If no events become active at the next control window, the existing problem 

formulation is recalculated according to a simple moving-horizon update. In general, the 

mapping of single elementary events into corresponding high-level problem formulation 

(and in the case of gPROMS corresponding declarative language constructs) is neither 

trivial nor convoluted provided that the semantics of the individual event-types are 

unambiguous. Interpreting composite events as well as the (rather common) case of 

multiple elementary events for a single process variable is more involved. 

2.2.4. Solution and Feasibility Supervisor 

Since the problem resulting from the PDM is a constrained dynamic optimisation 

problem, the existence of control-specification related constraints create a serious 

problem for on-line real-time applications: existence of a feasible solution. Given the 

fact that infeasibilities will occur, the proposed framework would have little success in 

an industrial setting if it was not able to recover from infeasibilities gracefully. 

Following the initiative we took in our original investigation, in this work we adopt the 

Solution-Feasibility Supervisor (SFS) as the dedicated component of the DRTO engine 

for monitoring the solution progress and handling infeasibilities. The SFS is further 

composed by a Solution Interpreter (SI) and a Constraint Manager (CM), as described 

below. 

The Solution Interpreter monitors the progress of the open-loop optimisation 

computation with the goal of avoiding solution failures and slow convergence due to 

constraint infeasibility/inconsistency. In essence, it logs the evolution of the numerical 

solution (magnitude of control variables, constraints violations and corresponding 

Lagrange multipliers) as well as the computation statistics (number of NLP iterations, 

line searches and corresponding times, etc) for performance monitoring and forecasting. 

Upon termination of the execution these logs are saved into a file as records of the open-

loop optimisation computation. 

At the moment of writing, the Constraint Manager has yet to be implemented because a 

number of technical issues (mostly timely access to solution and computation statistics 

in between gradient evaluations and line searches) impede the realisation of some key 

features of this component. In the future, it is expected that the CM will support two 

infeasibility recovery mechanisms: i) the less rigorous (and more straightforward to 

implement) constraint-ranking-and-elimination approach common of third-generation 

industrial MPC technology (Qin & Badgwell, 2003); and ii) the more rigorous 

infeasible-constraint identification-and-relaxation strategy. In the first approach, a sub-

set of low-priority constraints are dropped upon infeasibility; in the second strategy, a 

minimal subset of inconsistent constraints is first identified as problematic and then 

their enforcement is relaxed progressively until feasibility is achieved. 

3. Case-study 

The case study presented in this section is based on an industrial continuous cooking 

digester (and its auxiliary units) of a state-of-the-art Pulp and Paper mill. The model of 

such process system has been implemented in gPROMS resulting in a medium-to-large-

scale system of approximately 14,000 algebraic and 1,000 differential equations (DAEs) 

and 100 state transition networks (STNs). In this case study we use the DRTO engine to 

control a production-rate transition from 600.0 ad.ton/day to 650.0 ad.ton/day. From an 

operations-and-control perspective, the goal is to maximise the pulp-yield (Y) at a given 

production target (P) while maintaining the deviation of pulp-selectivity from its 

quality-control target below a given threshold. The process is initially at steady-state 
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and control actions start taking place two hours before the scheduled production-rate 

change. However, two hours after the transition a trip in the paper machine forces a 

production slow-down to the original rate of 600.0 ad.ton/day, which is enforced only 

two hours later. The DRTO engine drives the operations of the continuous cooking 

digester via the set-point of three controllers: the chip meter (CM) speed (feed rate of 

wood chips), and the temperature of the lower (LH) and wash (WH) circulation heaters 

(indirect bulk heating). Two interior-point and end-point constraints are imposed on the 

trajectories and final magnitude of blow-line kappa number and brownstock pulp 

production rate. The DRTO engine's prediction and control horizon are set to 7 and 5 hr, 

respectively, and the control window is 1 hr. Figures 1 and 2 show the trajectories of 

key process variables for this case-study. The DRTO engine successfully finds a set-

point trajectory for the regulatory control layer that keeps all controller variables within 

their designated operative bounds and also minimises the consumption of raw-materials 

(maximises the yield) at a given target production rate. 
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 Figure 1: Manipulated variables (MVs). Figure 2: Controlled variables (CVs). 

4. Conclusions and Future Work 

In this manuscript we discussed the vision of a domain framework and software 

platform that would enable the adoption of different model forms, solutions methods, 

and control/optimisation settings/strategies transparently and effectively in an industrial 

setting. The DRTO engine presented here is a proof-of-concept of this vision which 

enables industrialists to engage in a comparison of the pros and cons of controller-

design choices, including assessing optimality performance, feasibility-recovery 

schemes and computational load. Future work will involve the implementation of the 

Constraint Manager and address the subject of plant-model mismatch. 
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