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Abstract 
The detection of abnormal events in advance is still a challenge in chemical industries. 
The earlier it is done, the greater the possibility of at least mitigating losses. This study 
investigates the performance of a signal processing tool so-called hidden Markov model 
(HMM) in accomplishing detection tasks. The case study is based on a chemical 
recovery boiler that belongs to a Kraft pulping mill in Brazil. The identified model, 
characteristic of normal operating conditions, was exposed to usual situations, namely 
multiple normal operating states, transient periods, and abnormal events. The detection 
system was able to reach both mandatory requirements, i.e. early identification of 
abnormal situations and minimization of false alarm rates. 
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1. Introduction 
Process monitoring tasks in chemical industries aim to guarantee operating, economic, 
safety and/or environmental goals. Abnormal situations may result in several losses 
such as lower production, higher level of emissions, and equipment and personnel 
damages. This activity has three major tasks: detection, diagnosis, and process recovery 
to a normal or safety condition [1]. Since faults are in general incipient, deviations from 
normal operating conditions are smaller at the beginning; consequently, reaching early 
detection without the support of a computer-based system is practically unfeasible. 
Besides early detection, another challenge in process monitoring is the spatial 
overlapping problem among distinct fault classes. Therefore, once some events may 
only be distinguished from each other by taking into account their order of occurrence, 
it is worthy to consider a time series modelling. Most of the applications are normally 
based on residue metrics, and another way to approach the fault detection and diagnosis 
matter is using signal processing tools [2]. Thus, the so-called hidden Markov model 
(HMM) method appears as a promising decision support system for helping control 
room operators to accomplish process monitoring tasks. This data-driven technique 
belongs to the signal processing field and constitutes an alternative approach for the 
development of Fault Detection and Isolation (FDI) systems. This work investigates the 
performance of the hidden Markov model (HMM) technique in accomplishing detection 
tasks of abnormal situations in industrial chemical processes. The case study is based on 
a chemical recovery boiler that belongs to a Kraft pulping mill located in Brazil. Ref. 
[3] contains a review about the fault detection and diagnosis subject. Studies concerning 
process monitoring activities using HMMs on computer-simulated cases are those by 
[4-9]. 
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2. Hidden Markov model (HMM) 
Every chemical process is under random influences due to an inherent variability 
present in, e.g. raw material, air temperature, and stream compositions. Thus, 
measurements of process variables may be seen as realizations of an underlying 
stochastic process. Thus, normal operating conditions may be described by particular 
probability distributions, which fail in case of changes in process conditions [3]. (It 
means a change in mean and/or standard deviation in case of using Gaussians.) This is 
the motivation for putting together the signal processing tool so-called hidden Markov 
model (HMM) and the chemical process monitoring activity, once it is capable of 
identifying changes of statistical nature in signals (composed by measurements of 
process variables) over time. The successful applications are in the speech processing 
field, including both speech recognition and speaker verification, since the seventies 
[10]. 
2.1. Fault Detection Tasks with HMMs 
The goal of the hidden Markov model technique is to model sequential data. Fig. 1 
shows the input-output relation for them, in which the input is a temporal sequence of T 
vectors (O = {o1,o2,…,oT}), and the output is a likelihood value (-log[P(O|λ)]), which is 
a measure of the capacity of the model (λ) in generating the observed data (O). The 
logarithmic form is preferable in order to avoid underflow computational problems. 
After the occurrence of an incipient fault, likelihood values from an HMM representing 
normal operating conditions are lower over time due to changes in the underlying 
distribution. Thus, the method can be defined as a sequential pattern recognition tool. 
The temporal sequence (or pattern) is a set of symbols (discrete case) or real vectors of 
same size (continuous case). Such elements (ot) are called frames and each one carries a 
piece of information about the system at a given time t [10]. 

HMM (λ) -log[P(O|λ)]O={o1,o2,...,oT})
 

Fig. 1. Input-output relation for HMMs, where O is the observation sequence (O) and (-
log[P(O|λ)]) is the likelihood function. 
 
2.2. Mathematical Formulation 
Hidden Markov models are a doubly stochastic process, in which the former is 
responsible for the state-transitions (P(qt|qt-1)), whereas the latter is related to the 
observation-emissions (P(ot|qt)). As the state-transitions rule follows the Markov 
property, i.e. qt depends only on qt-1, the HMM concept is an extension of Markov 
chains. The difference between both classes of models relates to the second process 
since in Markov models the relationship between states and observations is 
deterministic. The hidden term in HMMs is due to the fact that the underlying Markov 
chain is not directly observable. Table 1 shows the three parameters to specify discrete 
HMMs, where MD is the number of distinct observation symbols in the emission 
probability distributions (one for state), and N is the size of the discrete state space. A 
compact notation for these parameters is given by λ, i.e. λ = (π,A,B). For the continuous 
case (used in this work), the B matrix is replaced by probability density functions, 
whose usual representation is a finite mixture of Gaussians, as in Eq. (1), where ot is the 
observation vector at time t, MC is the number of mixture components per state, and cjk 
is the mixture component (subjected to stochastic constraints), μjk is the mean vector, 
and Σjk is the covariance matrix, for the kth mixture component in the state j. The 
parameters π and A are the same as in the discrete case [10]. 
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Table 1. Elements of discrete HMMs. 
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3. Case study 
The case study is based on a chemical recovery boiler from a Kraft pulping mill in 
Brazil. One of its goals is to produce high pressure steam for electric power generation 
as well as heat transfer operations. The fuel is the residual liquor originating from the 
cooking stage of wood chips. The equipment has two regions: a furnace, where the 
combustion of the liquor and the recovery of specific inorganic compounds occur, and a 
convective heat transfer section, as in power boilers, co-responsible for transforming 
fresh water in high pressure steam. For that, this region has a series of heat exchangers, 
namely super-heater, boiler bank, and economizer, as shown in Fig. 2. A risk situation 
of great concern during boilers’ operation refers to water leaks in tubes of the heat 
exchangers due to the possibility of the water-smelt contact. The smelt is a pool of 
melting sodium-based compounds over the furnace floor, with a surface temperature of 
about 850 oC, which is more than enough to cause an explosion in case of contact with 
water [12]. These leaks are mostly caused by weld failures, and corrosion, fatigue and 
erosion of tubes [13]. Common mill practices are still based on operator’s actions, 
through patrols around the boiler and the monitoring of key variables mainly the fuel 
gas temperature along the section [14]. Thus, in a specific way, this study investigates 
the potential of the hidden Markov model technique in detecting abnormal events in the 
heat transfer section of the boiler under analysis, which may lead to risk situations, e.g. 
water-smelt contact. The considered region is enclosed by the super-heater and the 
boiler bank, and the monitored variable is the fuel gas temperature. 

 
Fig. 2. Sensors position for measuring the fuel gas temperature after both heat exchangers the 
super-heater and the boiler bank: TSH and TBB, respectively. 
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3.1. Data Set 
The data set comprehends one month of operation, with a sampling interval of five 
minutes. Table 2 presents the collected variables, where FBL, which determines the 
operating states in the boiler, may be considered discrete for this particular mill. Fig. 2 
shows the position of both temperature sensors in the convective heat transfer section. 
Other variables were collected in order to verify the operating conditions along this 
period. 
 
Table 2. Variables collected in the chemical recovery boiler. 

Operating Variable Code Range Unit 
Black liquor flow rate FBL 14-53 m3/h 
Fuel gas temperature after the super-heater TSH 453.8-771.1 oC 
Fuel gas temperature after the boiler bank TBB 282.0-397.8 oC 

4. Methodology 

4.1. Model Identification Step 
The goal is to identify a representative HMM for the boiler under normal operating 
conditions. A continuous HMM is used in this work, and each observation sequence is 
composed of 5 real vectors, i.e. O = {o1,o2,…,oT=5}, where ot = [TSH TBB]t'. The 
definition of the number of vector so-called frames should take into account the system 
dynamics, being smaller in case it is faster, and bigger, otherwise. As measurements are 
available each 5 minutes, a sequence is completely full after every 25 minutes. The data 
was divided into three subsets: training and validation (used in this step), and test. 
Initially, plenty of models are generated by varying the number of mixture components 
per state (MC), from 1 up to 3, and the number of states (N), from 2 up to 22. The 
topology of the models is a fixed parameter being used the ergodic one, in which there 
are no restrictions regarding state-transitions (A matrix), and the covariance matrix (Σ) 
is constrained to be diagonal in order to reduce computational efforts. Model selection is 
based on the likelihood function being selected the one that gives the highest mean 
value calculated onto the validation subset. The Baum-Welch algorithm, based on the 
Maximum Likelihood Estimation (MLE) principle, is employed in this step [15]. 
Finally, an upper control limit ( s3xUCL ⋅+= ) for defining a normal operating window 
is calculated, where x  and s  are the mean and the standard deviation of the likelihood 
function, respectively, considering the training and the validation data. 
4.2. Testing Step 
A reliable monitoring system has two requirements: early detection of abnormal events, 
and simultaneously minimization of false alarm rates. This step aims at exploring both 
issues related to detection tasks. For that, the model selected before is exposed to three 
usual scenarios during the operation of the equipment: (a) unseen normal operating 
states, which is given by the black liquor flow rate (FBL), (b) mixed observation 
sequences, composed of temperature measurements collected during normal transient 
periods, which is a result of a change in the liquor flow rate, and (c) abnormal 
situations. There is none register of such kind of event in the database, according to 
daily mill reports, and hence a real one was simulated. As the boiler operates in a 
continuous way, a trend plot for the likelihood function (the model output) arises over 
time, which constitutes a source of information about the operating condition of the 
equipment. The Forward algorithm is used to calculate the model output [10]. 
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5. Results and Discussion 

5.1. HMM Identification 
The training, validation, and test subsets contain, respectively, 687 (≈ 49%), 342 
(≈ 24%), and 369, observation sequences. A cleaning procedure was carried out before 
such division. Test data correspond to the last week in the monthly database. The 
selected HMM, characteristic of normal operations, among the 63 candidate models, is 
the one with 2 mixture components per state (MC) and 20 states (N). The upper control 
limit (UCL) is equal to 48.7. A tendency of having likelihood values beyond it acts as a 
warning about the possibility of an abnormal event in the region enveloped by the 
super-heater and the boiler bank in the convective heat transfer section of the boiler. 
5.2. Testing step 
The goal of this step is to get the behavior of the HMM previously identified when 
subjected to usual situations during the operation of chemical recovery boilers. In 
relation to the first two scenarios: unseen normal operating conditions and mixed 
observation sequences, the model was able to deal with both of them, once the 
associated likelihood values fell inside the normal operating window (i.e. below the 
upper limit control). This is a desirable characteristic regarding the matter of 
minimization of false alarm rates, since such conditions are associated to normal 
operations. Last scenario concerns the first step in monitoring activities, i.e. the 
detection task. Due to the lack of abnormal events in the database, according to daily 
mill reports, a possible one in a practical point of view was simulated. A decrease in the 
fuel gas temperature after the boiler bank (TBB) was introduced in the real data, at a 
fixed rate of 1 oC/min, as shown in Fig. 3(a). It may be caused by water leaks in boiler 
bank tubes, an incident that represents a potential risk of explosion due to the possibility 
of the contact between the water and the pool of melting chemical compounds over the 
furnace floor. Fig. 3(b) shows the resulting likelihood plot. The first thirteenth 
observation sequences (O1,O2,…,O13) refer to a normal condition, and the abnormal 
event starts at O14. The model is able to detect it in their initial stage, and as times goes 
by, output values are higher and higher once the probability of the model in generating 
the sequences diminishes. This model behavior can be explained by the change in the 
relationship between TSH (the fuel gas temperature after the super-heater) and TBB, 
which is an absent characteristic in both prior scenarios. 

    
 

(a)                                                                          (b) 

Fig. 3. (a) Simulation of an abnormal situation in the fuel gas temperature after the boiler bank 
(TBB), by the introduction of a decreasing at a fixed rate of 1 oC/min, and (b) resulting likelihood 
plot when the HMM characteristic of normal operating conditions is subjected to this event. 
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6. Conclusions 
A HMM, representative of normal operating conditions, was subjected to three 
scenarios of great interesting for chemical industries concerning the management of 
abnormal situations, namely unseen normal operating states, mixed observation 
sequences, and abnormal events. The results are promising with regard to both aspects 
early detection and minimization of false alarm rates, which are requirements for 
obtaining reliable detection systems. The resulting trend plot for the likelihood function 
is valuable source of information since it is capable of providing the current state of the 
process and then its tendency, by making associations between states of the Markov 
chain and operating states of the process, and of warning about the possibility of coming 
deviations from the normal condition. In case of considering multiple abnormal 
situations the magnitude of the model output (i.e. the likelihood value) may be used for 
the discrimination (or at least the identification of a subset) of them. In brief, chemical 
process monitoring activities may take advantage of decision support systems based on 
hidden Markov models. 
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