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Abstract

Previous methods on nonlinear sensor network design minimize cost subject to a variety of constraints linked to the network performance: precision, residual precision, error detectability and resilience. In recent work, the use of accuracy as an attribute of a network that can replace precision, error detectability and resilience more effectively has been considered. In this paper, we propose a sensor network design methodology based on accuracy thresholds.
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1. Introduction

In contrast with the use of objective functions such as observability or reliability that had been used, Bagajewicz (1997, 2000) formulated a mixed integer nonlinear programming to obtain sensor networks satisfying the constraints of residual precision, resilience, error detectability at minimal cost. A tree enumeration was proposed where at each node the optimization problem of the different characteristics are solved. 

To reduce the computational time Gala and Bagajewicz (2006a), proposed the tree enumeration approach based on branch and bounding, using cutsets. To make the computation more effective, especially for large scale problems, Bagajewicz and Gala (2000b), proposed a decomposition procedure where the process flow diagrams are decomposed to reduce the number of cutsets used for the enumeration. 

Non linear networks have been discussed by Nguyen and Bagajewicz (2007), where they resort to an equation based approach using bipartite graph as opposed to regular directed graphs and show that the concept of cutsets needs further modification.  They explore the use of variable enumeration in an inverted order that is removing sensors from a fully instrumented network, as opposed to adding sensors to a sensor-empty network. This strategy proved efficient for networks with stringent requirements of precision, error detectability and resilience. 

All the above work focused on minimizing network cost using precision, residual precision, error detectability and resilience constraints. In this work we also minimize network cost, but we use software accuracy (as defined by Bagajewicz, 2005), which replaces all the above network attributes, as a constraint. We first review accuracy and we then discuss issues of the methodology involved to calculate accuracy at each node. We finish with an example.  

2. Software Accuracy

Accuracy has been conventionally defined as the sum of absolute value of the systematic error and the standard deviation of the meter (Miller, 1996). Since in the absence of hardware or software redundancy the systematic errors cannot be detected, this conventional definition is not practical. Bagajewicz, (2005) defined accuracy with respect to the gross error detection scheme used to identify gross errors, thus differentiating software accuracy from hardware accuracy. 
Specifically, Bagajewicz (2005) considered that the presence of gross systematic errors
[image: image25.bmp] induces biases in all streams through the use of data reconciliation. These induced biases are given by
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where,
[image: image3.wmf](

)

A

ASA

A

W

T

T

1

-

=

, matrix A is the incidence matrix and matrix S is the variance-covariance matrix of measurements. The case considered is the linear case. He then defines accuracy as the sum of precision and the maximum undetected aforementioned induced bias. 
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where
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 are the accuracy, the maximum undetected induced bias and the precision (square root of variance ,
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) of the estimator, respectively. Next, he proposed to calculate the maximum undetected induced bias under the assumption that the maximum power test would be used in a serial elimination procedure. Thus, the maximum induced bias that will be undetected is given by (Bagajewicz, 2005): 
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In the presence of nT gross errors in positions given by a set T, the corresponding induced bias in variable i is 
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where 
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 is the vector containing a critical value of the gross error size in the selected positions corresponding to the set T at the confidence level p.  In order to find the maximum possible undetected induced bias, one has to explore all possible values of gross errors in the set.  Thus for each set ‘T,’ he proposed to define a binary vector ‘qT’ to indicate the location of gross errors and obtain the maximum induced and undetected bias by solving the following problem: 
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The absolute value constraint can be replaced by two inequalities, one for the negative sign and one for the positive one. The problem becomes a linear one.  Thus for nT=2, the feasible region has a form of a rhombus, as in Figure 1.  The rhombus is composed of positive and negative constraints of the problem that arise from the absolute value. We recognize that the solution lies in one of the four corners, which depends on how the two gross errors in question contribute to the induced bias  
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Figure 1.  Different regions when two gross errors are present in the system (From Nguyen et al, 2006)
Worth noticing, in some cases the above set of equations can be linearly dependant. This happens when the set of gross errors proposed in an equivalent set (Jiang and Bagajewicz, 1998). We illustrate this for the system of Figure 2. 
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Figure 2. Equivalency of gross errors

Assume that one wants to compute the induced bias in stream S1 by considering two biases in S2 and S3. This leads to two parallel lines, as it is illustrated in Figure 3.
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Figure 3. Graphical consequence of biases equivalency
It can be inferred from figure 2 and clearly shown in figure 3 that if the bias in stream S2 and bias in stream S3 are equal but in opposite side (such that the balance S1 = S2 + S3  is still valid), then those biases cannot be detected no matter how big they are.

3. Calculation of Software Accuracy at each node of the search tree

In this work, we use the tree enumeration method using list of fundamental units, which can be variables (Bagajewicz, 1997) or cutsets (Gala and Bagajewicz, 2006a, b) or equations (Nguyen and Bagajewicz, 2007).  At each node, software accuracy needs to be evaluated based on two inputs:

1. The positions of the sensors (given by a binary vector q). We assume there are n sensors.

2. The maximum number of gross errors (nT) the user is willing to consider in the definition of accuracy. 

Thus, if nT >n, the maximum number of gross errors is assumed to be n, that is nT=n. When n=nT , only one system of equations needs to be solved, and if nT<n, all combination of nT biases in the n sensors need to be evaluated. Thus, all the corresponding equations of the LP need to be included. 
4. Example
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[image: image23.bmp][image: image24.bmp]We consider the process illustrated in Bagajewicz, (2005) (Figure 4) that has 7 streams and 4 nodes. 


Figure 4. Flowsheet for example
We assume we need accuracy of 3% in stream 1 and 2% in stream 2 allowing only one gross error (nT=1).  The sensor precisions, flowrates and sensor costs are given table 1.

Table1. Precision, Flow rates, Sensor Cost of Example 1

	Stream
	Sensor Precision (σi)
	Flow 

Rates (Fi)
	Sensor Cost

	S1
	1
	100
	20

	S2
	0.447
	140
	25

	S3
	1
	140
	20

	S4
	1
	20
	15

	S5
	1
	120
	20

	S6
	1
	20
	10

	S7
	1
	100
	30


The above problem was solved by using the tree enumeration algorithm to find the accuracy values at each node and compare with the desired accuracy. It is found that the optimal solution is obtained only when all the streams but S7 and S2 are measured. The network cost is 85. 

It is also of interest to study the way accuracy changes as sensors are added. This is shown in Table 2 and Figure 5. This would correspond to the first branch of the enumeration tree (no branching criteria used). 

Table 2. Accuracy and Cost as a function of the number of sensors

	Streams measured 
	Accuracy (ai) %
	Cost of the network

	1
	S1= 1223.69

S2= 979.46
	20

	1,2
	S1= 531.09

S2= 385.93
	45

	1, 2, 3
	S1= 531.09

S2= 1.56
	65

	1, 2, 3, 4
	S1= 385.38

S2= 1.57
	80

	1, 2, 3, 4, 5
	S1= 385.39

S2= 1.28
	100

	1, 2, 3, 4, 5, 6
	S1= 2.67

S2= 1.24
	110

	1, 2, 3, 4, 5, 6, 7
	S1= 1.55

S2= 1.23
	140

	Optimal Solution

1, 3, 4, 5, 6
	S1= 2.79

S2= 1.99
	85
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Figure 5. Accuracy vs. Number of Streams Measured

We consider now the case of two gross errors in the system (nT=2). In this case, several equivalencies of gross errors can appear and therefore many combinations of errors lead to unbounded accuracy. Table 3 shows only the nodes of the tree that do not show unbounded results. Clearly, in this problem, one needs to measure all streams if accuracy is to be below 2.8 and 2.0 for streams S1 and S2. Only one node with 6 streams qualifies for a requirement of accuracy below 3.3 and 2.5 for streams S1 and S2 respectively. All other bounded nodes exhibit accuracies that are unacceptable. This is something that error detectability used together with precision constraints cannot capture. Situations with 3 or more gross errors will be discussed in future work. 
Table 3. Accuracy and Cost as a function of the number of sensors (nT=2)
	Streams measured 
	Cost
	Accuracy (ai) %

	Any 2 measurements 
	
	S1= unbounded

S2= unbounded

	Any 3 measurements
(1,2,5)
	65
	S1= 797.07
S2= 557.53

	4 Measurements 

(1,2,3,5)
	85
	S1= 770.07
S2= 283.01

	4 Measurements 

(1,2,5,7) or (1,3,5,7)
	95
	S1= 396.71
S2= 557.92

	5 Measurements 

 (1,2,3,6,7)
	105
	S1= 391.32
S2= 284.15

	6 Measurements 

(1,2,3,4,5,7)
	130
	S1= 396.71
S2= 2.198

	6 Measurements 

(1,2,3,4,6,7)
	120
	S1= 3.264
S2= 2.446

	6 Measurements 

(1,2,3,5,6,7)
	125
	S1= 3.136
S2= 283.149

	All measurements
	140
	S1= 2.748
S2= 1.98


5. Conclusions

A method incorporating software accuracy to design sensor networks was presented. We highlighted the importance of gross error equivalency (Bagajewicz and Jiang, 1998) in determining accuracy. Thus, we conclude that networks prone to have more than one bias need to be heavily instrumented if all reasonable biases are to be detected so that software accuracy is reasonable. 
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