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Abstract 
This paper presents a comparative performance analysis of various robust 
estimators used for nonlinear dynamic data reconciliation process subject to 
gross errors. Robust estimators based on cost functions derived from robust 
probability theory reduce the effect of gross errors on the reconciled data, 
avoiding the traditional iterative requirement procedures. The following robust 
probability functions were compared in this paper: Cauchy, Fair, Hampel, 
Logistic, Lorentzian, Normal Contaminated and Welsch. As a benchmark for 
this study it was adopted a nonlinear CSTR frequently reported in the process 
data reconciliation literature. The comparative analysis was based on the ability 
of the reconciliation approaches for reducing gross errors effect. Although the 
presence of constant biases has represented a problem for all the analyzed 
estimators, Welsch and Lorentzian cost functions, in this order, have shown 
better global performance. 
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1. Introduction 
 

Nowadays, data reconciliation (DR) represents an important step for many 
engineering activities in chemical processes as for example real time 
optimization and control implementations. It adjusts the measurement data, 
usually assumed associated to normally distributed random errors, to satisfy 
process constraints. However, to obtain satisfactory estimates, the negative 
influence of less frequently gross errors should be eliminated. This class of 
errors can be considered measurements that do not follow the statistical 
distribution of the bulk of the data. Gross errors can be divided in two classes: 
outliers and bias. The first class may be considered to include some abnormal 
behavior of measurement values as for example process leaks or malfunctioning 
instruments. The second class refers to the situation in which the measurement 
values are systematically too high or too low. A number of approaches have 
been proposed to deal with gross errors, mainly related to their detection and 
elimination. The traditional methods include serial elimination, compensation, 
and combinatorial ones, however these approaches are based on the assumption 
that the measurements are normally (Gaussian) distributed in which case 
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Weighted Least Squares (WLS) is the maximum likelihood estimator. As gross 
errors do not satisfy this ideal assumption an iterative sequential procedure is 
necessary for gross error detection and elimination, increasing computational 
effort. Tjoa and Biegler (1991) proved that using the Contaminated Normal 
estimator instead of the WLS one, any outlier present in the measurements could 
be replaced with reconciled values, without requiring iterative detection and 
elimination procedures. Johnston and Kramer (1995) reported the feasibility and 
better performance of robust estimators when used to cope with DR problems in 
the presence of gross errors. Subsequently, different types of robust estimators 
and their performance on DR were reported (Table 1). These studies have 
shown the potential of robust statistics to perform DR in the presence of gross 
errors, resulting in robust estimators that are insensitive to deviations from ideal 
assumptions, tending to look at the bulk of the measured data and ignoring 
atypical values. 
 

Table 1 Examples of Robust Estimators used for Data Reconciliation 

Author (Year) Estimator Applied 
Tjoa and Biegler (1991) Normal Contaminated 

Johnston and Kramer (1995) Normal Contaminated and Lorenzian 
Zhang et al. (1995)R Normal Contaminated 

Albuquerque and Biegler (1996) D Normal Contaminated and Fair 
Chen et al. (1998)R Fair and Lorenzian 

Bourouis et al. (1998) R Normal Contaminated 
Arora and Biegler (2001) D Hampel 

Özyurt and Pike (2004) R Normal Contaminated, Cauchy, Fair, 
Logistic, Lorenzian and Hampel 

Wongrat et al. (2005) Hampel 
Zhou et al. (2006) Huber 

R Works applied on real plant data (steady state conditions).  D Works applied in NDDR. 
 

In our knowledge robust estimators have not been applied in nonlinear 
dynamic real plant data yet. The first comparative study among some robust 
estimators in DR has been presented by Özyurt and Pike (2004). They conclude 
that the estimators based on Cauchy and Hampel distributions give promising 
results, however did not consider dynamic systems. Other earlier studied has 
been accomplished by Basu and Paliwal (1989) in autoregressive parameter 
robust estimation issues, showing that for their case the Welsch estimator 
produced the best results. 

This work presents a comparative performance analysis among some robust 
estimators (all estimators reported by Özyurt and Pike, 2004, and Welsch 
estimator) for nonlinear dynamic data reconciliation (NDDR in the presence of 
gross errors. 
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2. Problem formulation 
 

The most important robust estimators for data reconciliation belong to the 
class of M-estimators, which are generalizations of the maximum likelihood 
estimator. Assuming uncorrelated measurement data their covariance matrix 
becomes diagonal and the generalized DR problem has the form, 
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where ρ is any reasonable monotone function used for DR formulation, σi and ξi 
are, respectively, the standard deviation and the standard error of the discrete 
measured variable zi, y is the vector of estimated functions yi (reconciled 
measurements, model parameters and non-measured variables), f is a vector of 
dynamic constraints, h and g are, respectively, vectors of equality and inequality 
algebraic constraints. 

As an example, using the generalized formulation the ρ functions for the 
weighted least squares and Welsh estimators take the following forms, 

 

WLS 2

2
1)( iWLS ξξρ =  (03)

 

Welsch 
22

( , ) 1 exp
2
W i

W W
W

cc
c
ξρ ξ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥= − −⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (04)

 
where cW is a tuning parameter related to asymptotic efficiency (Rey,1988). 

Methods used to measure the robustness of an estimator involve an influence 
function (IF) that can be summarized by the effect of an observation on the 
estimates obtained (Arora and Biegler, 2001). The Welsch M-estimator 
introduced by Dennis and Welsch (1976) is a soft redescending estimator that, 
as the Cauchy estimator, presents an IF asymptotically approaching zero for 
large |ξ|. The 95% asymptotic efficiency on the standard normal distribution is 
obtained with the tuning constant cW = 2.9846. 

Figures 1 and 2 show, respectively, the effect of the standard error on the 
standardized ρ functions and influence functions for the WLS and Welsch 
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estimators. It can be observed in both figures that the robust estimator is much 
less influenced by large errors. 
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Fig. 1. ρ: WLS (---) and Welsch (─).  Fig. 2. IF: WLS (---) and Welsch (─). 

 
Several strategies have been proposed to solve constrained nonlinear 

dynamic programming problems (Biegler and Grossman, 2004). In this work a 
sequential strategy is applied to a time moving window (size = 5). For every 
sample time the differential equations of the dynamic constraints and the 
nonlinear programming optimization problem are solved sequentially using the 
measured data over the window until convergence is reached. The optimization 
problem is solved using the Gauss-Newton based solver ESTIMA (Noronha et 
al., 1993). 

3. Illustration example 
 

The performance of the robust estimators has been tested on the same CSTR 
used by Liebman et al. (1992) where the four variables in the system were 
assumed to be measured. The two input variables are the feed concentration and 
temperature while the two state variables are the output concentration and 
temperature. Measurements for both state and input variables were simulated at 
time steps of 1 (scaled time value corresponding to 2.5 s) adding Gaussian 
noise with a standard deviation of 5% of the reference values (see Liebman et 
al., 1992) to the “true” values obtained from the numerical integration of the 
reactor dynamic model. Same outliers and a bias were added to the simulated 
measurements. The simulation was initialized at a scaled steady state operation 
point (feed concentration = 6.5, feed temperature = 3.5, output concentration = 
0.1531 and output temperature = 4.6091). At time step 30 the feed concentration 
was stepped to 7.5. 

Due to space limitations, only results of output concentration and 
temperature for the WLS and Welsch estimators are presented in Figures 3, 4, 5 
and 6. The symbols (─), (○) and (●) represent the “true”, simulated and 
reconciled data, respectively. The output temperatures plotted have been 
magnified to emphasize the effect of the bias on their estimates. 
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Fig. 3. WLS: Output Concentration. Fig. 4. WLS: Output Temperature. 
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Fig. 5. Welsch: Output Concentration. Fig. 6. Welsch: Output Temperature. 

 
Comparing Figures 3 and 5 it can be seen that in the presence of an outlier in 

sampling time 25 the reconciled output concentrations using the robust Welsch 
estimator are better that the ones using the WLS estimator, which presents 
smearing values around this sampling time. However, even a robust estimator 
can result in biased estimates in the presence of a bias as can be seen around 
sampling times 80-82. In this work the time varying window always 
corresponds to measured values. However if the time varying window is built 
with the measured values at the current sample time and the already reconciled 
values at past sample times the effect of a bias will be minimized. Figures 4 and 
6 show the effect of bias measurements in the reconciled values of the output 
temperature, and again the WLS estimator results in worst estimates. 

Looking for a fair comparison among the estimators it was used the TER 
(Total Error Reduction) criteria proposed by Serth et al. (1987) that can be 
applicable when the “true” values are known. Table 2 summarizes the results 
obtained and shows best results for the Welsch and Lorentzian estimators. 

 
Table 2. TER analysis results for the estimators studied. 

Estimator Applied Output Concentration Output Temperature 
WLS 0.2040 0.9501 
Normal Contaminated 0.2885 0.9635 
Cauchy 0.3667 0.9631 
Fair 0.4072 0.9632 
Hampel 0.3953 0.9622 
Logistic 0.3633 0.9628 
Lorentzian 0.4290 0.9655 
Welsch 0.4724 0.9657 
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4.  Conclusions 
 

In this work a comparative analysis of the capacity of robust estimators to 
reduce the negative effect of gross errors on nonlinear dynamic data 
reconciliation was accomplished. The results obtained have shown that among 
the studied cases the Welsch and Lorentzian robust estimators produced better 
reconciled values, but they also have shown that, although the robust estimators 
were more efficient in reducing the effect of biases, this problem still deserves 
more investigation. 
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