
18th European Symposium on Computer Aided Process Engineering – ESCAPE 18
Bertrand Braunschweig and Xavier Joulia (Editors)

© 2008 Elsevier B.V./Ltd. All rights reserved.

A Heuristic for the Short-Term Planning of Multi-
Product Continuous Plants
Sascha Herrmann, Christoph Schwindt
Clausthal University of Technology, Operations Management Group,
Julius-Albert-Str. 2, 38678 Clausthal-Zellerfeld, Germany

Abstract
We consider the short-term production planning of multi-product continuous plants. In
the literature this problem is generally modeled as a large-size monolithic mixed-integer
linear or nonlinear program. In this paper we follow a decomposition approach which
partitions the problem into an operations planning and an operations scheduling prob-
lem. The operations planning problem consists in assigning the production tasks to the
processing units, fixing the operating conditions of the tasks, and computing the number
of operations executed for each task. This problem can be formulated as a nonlinear
program of moderate size containing only one integer variable. The solution to the op-
erations planning problem provides a set of operations, which have to be scheduled on
the processing units. For this operations scheduling problem we present a novel mixed-
integer linear programming formulation as well as a fast priority-rule based scheduling
method. In contrast to the classical monolithic approaches, our new method is able to
find good feasible schedules for large-scale instances within less than five seconds.

Keywords: Short-term planning, multi-product continuous plants, real-time scheduling.

1. Introduction
Grade production in the process industries is often performed on multi-product continu-
ous production plants. These plants consist of several multi-purpose processing units
operated in continuous mode and storage facilities for stocking the states, i.e., the raw
materials, intermediates, and final products. Final products arise from a sequence of
chemical or physical transformations called tasks. Each task transforms one or several
input states into one or several output states. Sometimes, the input and output propor-
tions are not given in advance, but may be chosen within prescribed bounds. During the
execution of a task, the material flows continuously through the processing unit, where
we assume the flow rates to be constant over time. The execution of a task on a process-
ing unit during a specified processing time with a given production rate and fixed input
and output proportions is referred to as an operation.
In difference to the monolithic problem formulations known from literature (see e.g.,
Giannelos and Georgiadis 2002 and Shaik and Floudas 2007), we follow a hierarchical
decomposition approach, which has originally been proposed by Neumann et al. 2002
for the short-term planning of batch production. The short-term planning problem quite
naturally decomposes into an operations planning and an operations scheduling prob-
lem. The heuristic decomposition of the problem allows us to cope with large instances
within a very short amount of time. Hence, this approach may be used for practical real-
time applications.
We present computational results for a case study introduced by Munawar et al. 2003.
Processing yields, which can be modeled as output proportions in our approach, lower

2 S. Herrmann, C. Schwindt

and upper bounds on the processing rates, as well as transition times are adopted from
the original case study. Initially, the case study has been introduced for a cyclic demand
pattern, where the objective consists in maximizing the profit generated within a given
time window. As our approach is designed for short-term planning, we solve the dual of
the original problem, i.e., we want to minimize the makespan needed to produce the
amounts of final products obtained by Munawar et al. for the maximum-profit problem.
In practice, the primary requirements generally arise from a mid-term campaign plan-
ning which considers the production and logistics activities in a distributed value chain
at an aggregate level (see Meiler et al. 2007 for a recent campaign planning approach).

2. The operations planning problem
In this section we briefly sketch some key characteristics of the operations planning
problem. The purpose of operations planning is to assign the tasks to the processing
units and to determine feasible operating conditions for the tasks, i.e., the input and out-
put proportions, the flow rates, and the processing times. A formulation of an operations
planning problem as a continuous nonlinear programming problem can be found in
Herrmann and Schwindt 2007. The start of a continuous task requires time, material,
and manpower. That is why the number of executions of a continuous task should re-
main reasonably small (cf. Méndez and Cerdá 2002). The model of Herrmann and
Schwindt assumes that every task is executed exactly once. Due to the limited availabil-
ity of storage space for the intermediates, in some cases multiple executions of a task
may become necessary. We have integrated the possibility of repeating the execution of
tasks into the model by introducing one integer variable ν , which indicates the number
of replications of the same plan needed to satisfy the primary requirements. The objec-
tive of our operations planning model is the minimization of the workload to be sched-
uled on the processing units, and, as a second-order criterion, the minimization of the
number ν of plan replications.

3. The operations scheduling method
A solution to the operations planning problem yields the set O of operations i with
fixed processing times ip . The operations scheduling problem consists in computing a
production schedule with minimum makespan for the execution of the operations Oi∈
on the processing units Uu∈ subject to material-availability and storage-capacity con-
straints for the intermediates. By OOu ⊆ we denote the set of all operations executed
on processing unit u . Let iS be the start time of operation i and let OiiSS ∈=)(~ be
the production schedule sought. Then the proportion),~(tSxi of operation i executed at
time t given schedule S~ equals))/)(,1min(,0max(ii pSt − . Between the execution of
operations i and j on the same processing unit u , a cleaning of sequence-dependent
duration u

ijc is necessary. Moreover, for each state Ss∈ we are given an initial stock
sr0 and a storage capacity

s
R . By s

ir we denote the total requirement of operation i for
storage space for state s , where we establish the convention that s

ir is positive if s is
produced and negative if s is consumed. Finally, we define sO+ and sO− to be the sets
of all operations producing or consuming, respectively, state s .
In the following subsections we present a formulation of the operation scheduling prob-
lem as a mixed-integer linear program and an efficient priority-rule based scheduling
method for solving the operations scheduling problem.

A Heuristic for the Short-Term Planning of Multi-Purpose Continuous Plants 3

3.1. Mixed-integer linear programming scheduling model
We exploit the fact that every scheduling problem with storage-capacity constraints can
be transformed into an equivalent problem with infinite storage capacities. To eliminate
the storage-capacity constraints we introduce for each state s a fictitious state 's with
initial stock sss rRr 0

'
0 −= and we put ∞== ::

'ss
RR and s

i
s

i rr −=:' for all operations
Oi∈ .

Our operations scheduling model is based on the representation of feasible schedules
devised by Neumann et al. 2005. For the formulation of the model we need the sets of
pairs sss OOP −+ ×=:1 , }|),{(\:2

ssss OiiiOOP −−− ∈×= , }|),{(\:3
ssss OiiiOOP +++ ∈×= ,

sss OOP +− ×=:4 , and s
kk

s PP 4
1: =∪= . We associate each pair sPji ∈),(with a continu-

ous variable s
ijx and a binary variable s

ijy . There always exists an optimal solution to
the model such that s

ijx equals the relative progress),~(tSx j of operation j at time
iSt = if sOi +∈ and at time ii pSt += if sOi −∈ . Finally, we introduce binary vari-

ables u
ijz indicating whether or not operation i is executed before operation j on

unit u . The mixed-integer linear operations scheduling model then reads as follows:

Min. maxC
s.t. ii pSC +≥max)(Oi∈ (1)

)1(u
ij

u
ijiij zMcpSS −−++≥):,;(jiOjiUu u <∈∈ (2)

 u
ij

u
jijji MzcpSS −++≥):,;(jiOjiUu u <∈∈ (3)

 10 ≤≤ s
ijx)),(;(sPjiSs ∈∈ (4)

 s
ij

s
ij yx ≥)),(;(21

ss PPjiSs ∪∈∈ (5)

 s
ij

s
ij yx −≤ 1)),(;(43

ss PPjiSs ∪∈∈ (6)

)1(s
ijjij

s
ij

s
ijj yMpSSMyxp −+−≤−≤−−)),(;(1

sPjiSs ∈∈ (7)

)1(s
ijjiij

s
ij

s
ijj yMppSSMyxp −+−≤−−≤−−)),(;(2

sPjiSs ∈∈ (8)

 s
ij

s
ijjij

s
ij MyxpSSyM +−≤−≤−−)1()),(;(3

sPjiSs ∈∈ (9)

 s
ij

s
ijjiij

s
ij MyxppSSyM +−≤−−≤−−)1()),(;(4

sPjiSs ∈∈ (10)

 ∑ ≠∈ ≥+ ijOj
s
ij

s
j

s
s xrr :0 0);(sOiSs +∈∈ (11)

 0:0 ≥++ ∑ ≠∈ ijOj
s
ij

s
j

s
i

s
s xrrr);(sOiSs −∈∈ (12)

 }1,0{∈s
ijy)),(;(sPjiSs ∈∈ (13)

 }1,0{∈u
ijz):,;(jiOjiUu u <∈∈ (14)

Inequality (1) defines the production makespan to be equal to the maximum completion
time of all operations. Constraints (2) and (3) prevent the overlapping of consecutive
operations or cleanings on the same processing unit. Inequalities (4) ensure that propor-
tions s

ijx are between 0 and 1. The link between the continuous variables iS and s
ijx is

established by constraints (5) – (10) via the binary variables s
ijy . Finally, inequalities

(11) and (12) formulate the material-availability constraints, which for each state s
have to be satisfied at the start times iS of the producing operations sOi +∈ and at the
completion times ii pS + of the consuming operations sOi −∈ .

4 S. Herrmann, C. Schwindt

3.2. Priority-rule based scheduling method
The basic principle of a priority-rule based scheduling method consists in iteratively
expanding a partial schedule by adding eligible operations, which are selected based on
priority values. In our implementation, an operation is said to be eligible if the required
amounts of all input products are available after the completion of the last operation
already scheduled. The selected operation j is started at the earliest point in time jt for
which the operation can be executed on the respective processing unit and sufficient
input materials are in stock during the entire execution time of this operation.
Thus far we have not taken the limited capacities of the storage facilities into account.
Accordingly, the partial schedules may cause capacity overflows in the storage facili-
ties. The storage-capacity constraints are considered via capacity-driven latest start
times. If in some iteration we have generated a capacity overflow for some state s at
some time t , we temporarily force all eligible operations sOi −∈ to start no later than
time t . Those latest start times are maintained until the capacity overflow for state s
has been removed. As a consequence it may happen that the operation j selected for
being scheduled cannot be added to the partial schedule because its latest start time is
strictly smaller than the earliest feasible start time jt . In this case we perform an un-
scheduling step in the following way. At first, we identify the origin of the capacity con-
flict, i.e., the operation sOCi +∩∈ that produced the material that cannot be stocked
and hence has determined the latest start time of j . We then increase the earliest start
time of i by tt j − time units by introducing a release date of ttS ji −+ . Finally, we
remove all operations from the partial schedule and restart the scheduling procedure.
The unscheduling procedure is also invoked in case where all operations have been
scheduled and the resulting complete schedule still causes capacity overflows. Algo-
rithm 1 summarizes the procedure described above. The algorithm can be implemented
as a multi-start procedure by randomly sampling the priority values of the operations.

Algorithm 1. Priority-rule based scheduling method
compute earliest start times iES for all operations Oi∈ ;
initialize latest start times ∞=:iLS for all operations Oi∈ and put ∅=:C ;
repeat

if OC ≠ then
determine set COE \⊆ of eligible operations;
select eligible operation Ej∈ with highest priority value)(jπ ;
determine earliest feasible start time jt of j , disregarding the storage-capacity
constraints;
if jj LSt ≤ then

put jj tS =: and }{: jCC ∪= ;
update earliest and latest start times iES and iLS of operations COi \∈ ;

end if;
end if;
if no operation j has been scheduled then perform an unscheduling step;

until OC = and schedule S~ satisfies all storage-capacity constraints;
return schedule S~ ;

A Heuristic for the Short-Term Planning of Multi-Purpose Continuous Plants 5

3.3. Postprocessing and concatenation of schedules
The unscheduling steps of the priority-rule based method may lead to unnecessary idle
times in the complete schedule. These idle times can be removed by the following post-
processing method. From the feasible complete schedule we extract precedence rela-
tionships between operations that are executed consecutively on the same processing
unit as well as pegging relationships between operations producing and operations con-
suming the same state. Those relationships are translated into minimum and maximum
time lags between the start times of the operations that guarantee the feasibility of the
schedule (see Herrmann and Schwindt 2007). Next, we determine the earliest start
schedule with respect to the minimum and maximum time lags. By construction, this
earliest start schedule is feasible and left-shifted with respect to the original schedule.
We then extract precedence and pegging relationships from the new schedule and pro-
ceed in the same way until a fixed point has been reached. Since the generated sequence
of schedules is decreasing and bounded from below, the fixed point always exists and
coincides with the limit of the sequence.
If more than one execution of the tasks is needed to satisfy the primary requirements,
we construct the overall production schedule by computing a (sub-)schedule S~ for one
plan replication with the mixed-integer linear programming model or the priority-rule
based method and by concatenating the required number ν of copies of subsched-
ule S~ . To this end, we at first put the copies in a row by increasing the start times of
each operation by the makespan of the preceding subschedule in the sequence. Obvi-
ously, the constructed overall schedule is feasible, since subschedule S~ was feasible.
Then, we apply our postprocessing procedure, which deletes the idle times in the final
production schedule. As explained above, the resulting schedule is always feasible.

4. Computational experience and conclusions
We have validated our decomposition approach using various case studies from litera-
ture. In this section we report on the results obtained for the case study of Munawar et
al. (2003) mentioned in Section 1. Since we do not consider slopping in our approach,
we have increased the primary requirements for the final products by the slopping
losses. In detail, this has lead to primary requirements of 8348.00 t for grade A,
10044.07 t for grade B, 2195.47 t for grade C, and 3179.76 t for grade D. The required
intermediates and final products have to be produced within a scheduling horizon of
1000 h. The operations planning and operations scheduling models have been imple-
mented under GAMS 22.5, using DICOPT 2 and CONOPT 3.1 as solvers for the opera-
tions planning model and CPLEX 10.2 as solver for the operations scheduling model.
The priority-rule based scheduling method has been coded in C++. All computations
have been performed on an AMD Sempron PC with 1.8 GHz clock pulse and 884 MB
RAM running Linux as operating system. Solving the operations planning problem to
optimality has taken 0.38 s of CPU time. For the operations scheduling with the mixed-
integer linear program and with the priority-rule based method we have imposed a time
limit of 9 h and 5 s, respectively. The solution of the operations planning model gives
rise to 16=ν plan replications and a total workload of 4393.70 h. Starting from this
solution we have created five scheduling instances, where the operations of 1, 2, 4, 8, or
all 16 replications are to be scheduled jointly. Accordingly, for the first four instances
the production schedule arises from concatenating 16, 8, 4, or 2 (sub-)schedules.

6 S. Herrmann, C. Schwindt

The results obtained for
the mixed-integer linear
programming formulation
(MILP) and the priority-
rule based method (PR)
are presented in Table 1.
For each of the five
scheduling instances, we
give the makespans maxC
of the subschedules and of
the overall production
schedule. The CPU times
refer to the total time needed to generate the production schedule. The results indicate
that the decomposition approach performs quite well. Compared to the benchmark value
of 1000 h, the makespan could be significantly improved. Based on the MILP formula-
tion of Section 3, optimal solutions to the operations scheduling problem can be com-
puted within reasonable time for small and medium-sized problem instances. When
dealing with large-scale instances containing more than 100 operations, the MILP ap-
proach reaches its limits. In contrast, the priority-rule based scheduling method has pro-
vided very good solutions for the large-scale instances within 5 s, the small and me-
dium-sized instances even being solved to optimality. It is worth noting that first, the
makespans of the subschedules increase sublinearly with the number of operations to be
scheduled and second, the makespans of the overall production schedules are nearly
independent of the number of replications. The first observation suggests that the prior-
ity-rule based method scales quite well, while the second one indicates that only a minor
loss in accuracy is incurred by using the concatenation approach.

References
N. Giannelos, and C. Georgiadis, 2002, A novel event-driven formulation for short-term

scheduling of multipurpose continuous processes, Ind. Eng. Chem. Res. 41, 2431–2439.
S. Herrmann, and C. Schwindt, 2007, Planning and scheduling continuous operations in the

process industries, in H.-O. Günther, D. Mattfeld, and L. Suhl: Management logistischer
Netzwerke, Physica, Heidelberg, pp. 279–299.

M. Meiler, H. Günther, and M. Grunow, 2007, Network-wide campaign planning for multi-stage
processes in the chemical industry, IEEE IEEM 2007 Conference, 1352–1356.

C. Méndez, and J. Cerdá, 2002, An efficient MILP continuous-time formulation for short-term
scheduling of multiproduct continuous facilities, Comp. & Chem. Eng. 26, 687–695.

S. Munawar, M. Bhushan, R. Gudi, and A. Belliappa, 2003, Cyclic scheduling of continuous
multiproduct plants in a hybrid flowshop facility, Ind. Eng. Chem. Res. 42, 5861–5882.

K. Neumann, C. Schwindt, and N. Trautmann, 2002, Advanced production scheduling for batch
plants in process industries, OR Spectrum 24, 251–279.

K. Neumann, C. Schwindt, and N. Trautmann, 2005, Scheduling of continuous and discontinuous
material flows with intermediate storage restrictions, EJOR 165, 495–509.

M. Shaik, and C. Floudas, 2007, Improved unit-specific event-based continuous-time model for
short-term scheduling of continuous processes: Rigorous treatment of storage requirements,
Ind. Eng. Chem. Res. 46, 1764–1779.

1 Number of operations per task and replication / number of plan replications / total number of

operations per replication

 1/16/161 2/8/32 4/4/64 8/2/128 16/1/256

Subschedule maxC 73.01 121.03 223.13 — —

Overall maxC 838.73 835.71 835.71 — —

M
IL

P

CPU time [s] 0.28 1.67 190.52 > 9 h > 9 h

Subschedule maxC 73.01 121.03 223.13 427.32 847.81

Overall maxC 838.73 835.71 835.71 835.71 847.81 PR

CPU time [s] 5.24 5.25 5.26 5.36 5.21

Table 1. Computational results for the case study of Munawar
et al. (2003) obtained with the MILP scheduling model and the
priority-rule based method

