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Abstract 
We consider the short-term production planning of multi-product continuous plants. In 
the literature this problem is generally modeled as a large-size monolithic mixed-integer 
linear or nonlinear program. In this paper we follow a decomposition approach which 
partitions the problem into an operations planning and an operations scheduling prob-
lem. The operations planning problem consists in assigning the production tasks to the 
processing units, fixing the operating conditions of the tasks, and computing the number 
of operations executed for each task. This problem can be formulated as a nonlinear 
program of moderate size containing only one integer variable. The solution to the op-
erations planning problem provides a set of operations, which have to be scheduled on 
the processing units. For this operations scheduling problem we present a novel mixed-
integer linear programming formulation as well as a fast priority-rule based scheduling 
method. In contrast to the classical monolithic approaches, our new method is able to 
find good feasible schedules for large-scale instances within less than five seconds. 
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1. Introduction 
Grade production in the process industries is often performed on multi-product continu-
ous production plants. These plants consist of several multi-purpose processing units 
operated in continuous mode and storage facilities for stocking the states, i.e., the raw 
materials, intermediates, and final products. Final products arise from a sequence of 
chemical or physical transformations called tasks. Each task transforms one or several 
input states into one or several output states. Sometimes, the input and output propor-
tions are not given in advance, but may be chosen within prescribed bounds. During the 
execution of a task, the material flows continuously through the processing unit, where 
we assume the flow rates to be constant over time. The execution of a task on a process-
ing unit during a specified processing time with a given production rate and fixed input 
and output proportions is referred to as an operation.  
In difference to the monolithic problem formulations known from literature (see e.g., 
Giannelos and Georgiadis 2002 and Shaik and Floudas 2007), we follow a hierarchical 
decomposition approach, which has originally been proposed by Neumann et al. 2002 
for the short-term planning of batch production. The short-term planning problem quite 
naturally decomposes into an operations planning and an operations scheduling prob-
lem. The heuristic decomposition of the problem allows us to cope with large instances 
within a very short amount of time. Hence, this approach may be used for practical real-
time applications.  
We present computational results for a case study introduced by Munawar et al. 2003. 
Processing yields, which can be modeled as output proportions in our approach, lower 
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and upper bounds on the processing rates, as well as transition times are adopted from 
the original case study. Initially, the case study has been introduced for a cyclic demand 
pattern, where the objective consists in maximizing the profit generated within a given 
time window. As our approach is designed for short-term planning, we solve the dual of 
the original problem, i.e., we want to minimize the makespan needed to produce the 
amounts of final products obtained by Munawar et al. for the maximum-profit problem. 
In practice, the primary requirements generally arise from a mid-term campaign plan-
ning which considers the production and logistics activities in a distributed value chain 
at an aggregate level (see Meiler et al. 2007 for a recent campaign planning approach).  

2. The operations planning problem 
In this section we briefly sketch some key characteristics of the operations planning 
problem. The purpose of operations planning is to assign the tasks to the processing 
units and to determine feasible operating conditions for the tasks, i.e., the input and out-
put proportions, the flow rates, and the processing times. A formulation of an operations 
planning problem as a continuous nonlinear programming problem can be found in 
Herrmann and Schwindt 2007. The start of a continuous task requires time, material, 
and manpower. That is why the number of executions of a continuous task should re-
main reasonably small (cf. Méndez and Cerdá 2002). The model of Herrmann and 
Schwindt assumes that every task is executed exactly once. Due to the limited availabil-
ity of storage space for the intermediates, in some cases multiple executions of a task 
may become necessary. We have integrated the possibility of repeating the execution of 
tasks into the model by introducing one integer variable ν , which indicates the number 
of replications of the same plan needed to satisfy the primary requirements. The objec-
tive of our operations planning model is the minimization of the workload to be sched-
uled on the processing units, and, as a second-order criterion, the minimization of the 
number ν  of plan replications.  

3. The operations scheduling method 
A solution to the operations planning problem yields the set O  of operations i  with 
fixed processing times ip . The operations scheduling problem consists in computing a 
production schedule with minimum makespan for the execution of the operations Oi∈  
on the processing units Uu∈  subject to material-availability and storage-capacity con-
straints for the intermediates. By OOu ⊆  we denote the set of all operations executed 
on processing unit u . Let iS  be the start time of operation i  and let OiiSS ∈= )(~  be 
the production schedule sought. Then the proportion ),~( tSxi  of operation i  executed at 
time t  given schedule S~  equals ))/)(,1min(,0max( ii pSt − . Between the execution of 
operations i  and j  on the same processing unit u , a cleaning of sequence-dependent 
duration u

ijc  is necessary. Moreover, for each state Ss∈  we are given an initial stock 
sr0  and a storage capacity 

s
R . By s

ir we denote the total requirement of operation i  for 
storage space for state s , where we establish the convention that s

ir  is positive if s  is 
produced and negative if s  is consumed. Finally, we define sO+  and sO−  to be the sets 
of all operations producing or consuming, respectively, state s .  
In the following subsections we present a formulation of the operation scheduling prob-
lem as a mixed-integer linear program and an efficient priority-rule based scheduling 
method for solving the operations scheduling problem.  
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3.1. Mixed-integer linear programming scheduling model 
We exploit the fact that every scheduling problem with storage-capacity constraints can 
be transformed into an equivalent problem with infinite storage capacities. To eliminate 
the storage-capacity constraints we introduce for each state s  a fictitious state 's  with 
initial stock sss rRr 0

'
0 −=  and we put ∞== ::

'ss
RR  and s

i
s

i rr −=:'  for all operations 
Oi∈ .  

Our operations scheduling model is based on the representation of feasible schedules 
devised by Neumann et al. 2005. For the formulation of the model we need the sets of 
pairs sss OOP −+ ×=:1 , }|),{(\:2

ssss OiiiOOP −−− ∈×= , }|),{(\:3
ssss OiiiOOP +++ ∈×= , 

sss OOP +− ×=:4 , and s
kk

s PP 4
1: =∪= . We associate each pair sPji ∈),(  with a continu-

ous variable s
ijx  and a binary variable s

ijy . There always exists an optimal solution to 
the model such that s

ijx   equals the relative progress ),~( tSx j  of operation j  at time 
iSt =  if sOi +∈  and at time ii pSt +=  if sOi −∈ . Finally, we introduce binary vari-

ables u
ijz  indicating whether or not operation i  is executed before operation j  on 

unit u . The mixed-integer linear operations scheduling model then reads as follows: 

Min.  maxC  
s.t.  ii pSC +≥max  )( Oi∈  (1) 

 )1( u
ij

u
ijiij zMcpSS −−++≥  ):,;( jiOjiUu u <∈∈  (2) 

 u
ij

u
jijji MzcpSS −++≥  ):,;( jiOjiUu u <∈∈  (3) 

 10 ≤≤ s
ijx  )),(;( sPjiSs ∈∈  (4) 

 s
ij

s
ij yx ≥  )),(;( 21

ss PPjiSs ∪∈∈  (5) 

 s
ij

s
ij yx −≤ 1  )),(;( 43

ss PPjiSs ∪∈∈  (6) 

 )1( s
ijjij

s
ij

s
ijj yMpSSMyxp −+−≤−≤−−  )),(;( 1

sPjiSs ∈∈  (7) 

 )1( s
ijjiij

s
ij

s
ijj yMppSSMyxp −+−≤−−≤−−  )),(;( 2

sPjiSs ∈∈  (8) 

 s
ij

s
ijjij

s
ij MyxpSSyM +−≤−≤−− )1(  )),(;( 3

sPjiSs ∈∈  (9) 

 s
ij

s
ijjiij

s
ij MyxppSSyM +−≤−−≤−− )1(  )),(;( 4

sPjiSs ∈∈  (10) 

 ∑ ≠∈ ≥+ ijOj
s
ij

s
j

s
s xrr :0 0  );( sOiSs +∈∈  (11) 

 0:0 ≥++ ∑ ≠∈ ijOj
s
ij

s
j

s
i

s
s xrrr  );( sOiSs −∈∈  (12) 

 }1,0{∈s
ijy  )),(;( sPjiSs ∈∈  (13) 

 }1,0{∈u
ijz  ):,;( jiOjiUu u <∈∈  (14) 

Inequality (1) defines the production makespan to be equal to the maximum completion 
time of all operations. Constraints (2) and (3) prevent the overlapping of consecutive 
operations or cleanings on the same processing unit. Inequalities (4) ensure that propor-
tions s

ijx  are between 0 and 1. The link between the continuous variables iS  and s
ijx  is 

established by constraints (5) – (10) via the binary variables s
ijy . Finally, inequalities 

(11) and (12) formulate the material-availability constraints, which for each state s  
have to be satisfied at the start times iS  of the producing operations sOi +∈  and at the 
completion times ii pS +  of the consuming operations sOi −∈ . 
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3.2. Priority-rule based scheduling method 
The basic principle of a priority-rule based scheduling method consists in iteratively 
expanding a partial schedule by adding eligible operations, which are selected based on 
priority values. In our implementation, an operation is said to be eligible if the required 
amounts of all input products are available after the completion of the last operation 
already scheduled. The selected operation j  is started at the earliest point in time jt  for 
which the operation can be executed on the respective processing unit and sufficient 
input materials are in stock during the entire execution time of this operation.  
Thus far we have not taken the limited capacities of the storage facilities into account. 
Accordingly, the partial schedules may cause capacity overflows in the storage facili-
ties. The storage-capacity constraints are considered via capacity-driven latest start 
times. If in some iteration we have generated a capacity overflow for some state s  at 
some time t , we temporarily force all eligible operations sOi −∈  to start no later than 
time t . Those latest start times are maintained until the capacity overflow for state s  
has been removed. As a consequence it may happen that the operation j  selected for 
being scheduled cannot be added to the partial schedule because its latest start time is 
strictly smaller than the earliest feasible start time jt . In this case we perform an un-
scheduling step in the following way. At first, we identify the origin of the capacity con-
flict, i.e., the operation sOCi +∩∈  that produced the material that cannot be stocked 
and hence has determined the latest start time of j . We then increase the earliest start 
time of i  by tt j −  time units by introducing a release date of ttS ji −+ . Finally, we 
remove all operations from the partial schedule and restart the scheduling procedure. 
The unscheduling procedure is also invoked in case where all operations have been 
scheduled and the resulting complete schedule still causes capacity overflows. Algo-
rithm 1 summarizes the procedure described above. The algorithm can be implemented 
as a multi-start procedure by randomly sampling the priority values of the operations. 
 
Algorithm 1. Priority-rule based scheduling method 
compute earliest start times iES  for all operations Oi∈ ;  
initialize latest start times ∞=:iLS  for all operations Oi∈  and put ∅=:C ; 
repeat 

if  OC ≠  then 
determine set COE \⊆  of eligible operations; 
select eligible operation Ej∈  with highest priority value )( jπ ;  
determine earliest feasible start time jt  of j , disregarding the storage-capacity 
constraints; 
if jj LSt ≤  then 

put jj tS =:  and }{: jCC ∪= ; 
update earliest and latest start times iES  and iLS  of operations COi \∈ ; 

end if; 
end if; 
if no operation j  has been scheduled then perform an unscheduling step; 

until OC =  and schedule S~  satisfies all storage-capacity constraints; 
return schedule S~ ; 
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3.3. Postprocessing and concatenation of schedules 
The unscheduling steps of the priority-rule based method may lead to unnecessary idle 
times in the complete schedule. These idle times can be removed by the following post-
processing method. From the feasible complete schedule we extract precedence rela-
tionships between operations that are executed consecutively on the same processing 
unit as well as pegging relationships between operations producing and operations con-
suming the same state. Those relationships are translated into minimum and maximum 
time lags between the start times of the operations that guarantee the feasibility of the 
schedule (see Herrmann and Schwindt 2007). Next, we determine the earliest start 
schedule with respect to the minimum and maximum time lags. By construction, this 
earliest start schedule is feasible and left-shifted with respect to the original schedule. 
We then extract precedence and pegging relationships from the new schedule and pro-
ceed in the same way until a fixed point has been reached. Since the generated sequence 
of schedules is decreasing and bounded from below, the fixed point always exists and 
coincides with the limit of the sequence.  
If more than one execution of the tasks is needed to satisfy the primary requirements, 
we construct the overall production schedule by computing a (sub-)schedule S~  for one 
plan replication with the mixed-integer linear programming model or the priority-rule 
based method and by concatenating the required number ν  of copies of subsched-
ule S~ . To this end, we at first put the copies in a row by increasing the start times of 
each operation by the makespan of the preceding subschedule in the sequence. Obvi-
ously, the constructed overall schedule is feasible, since subschedule S~  was feasible. 
Then, we apply our postprocessing procedure, which deletes the idle times in the final 
production schedule. As explained above, the resulting schedule is always feasible. 

4. Computational experience and conclusions 
We have validated our decomposition approach using various case studies from litera-
ture. In this section we report on the results obtained for the case study of Munawar et 
al. (2003) mentioned in Section 1. Since we do not consider slopping in our approach, 
we have increased the primary requirements for the final products by the slopping 
losses. In detail, this has lead to primary requirements of 8348.00 t for grade A, 
10044.07 t for grade B, 2195.47 t for grade C, and 3179.76 t for grade D. The required 
intermediates and final products have to be produced within a scheduling horizon of 
1000 h. The operations planning and operations scheduling models have been imple-
mented under GAMS 22.5, using DICOPT 2 and CONOPT 3.1 as solvers for the opera-
tions planning model and CPLEX 10.2 as solver for the operations scheduling model. 
The priority-rule based scheduling method has been coded in C++. All computations 
have been performed on an AMD Sempron PC with 1.8 GHz clock pulse and 884 MB 
RAM running Linux as operating system. Solving the operations planning problem to 
optimality has taken 0.38 s of CPU time. For the operations scheduling with the mixed-
integer linear program and with the priority-rule based method we have imposed a time 
limit of 9 h and 5 s, respectively. The solution of the operations planning model gives 
rise to 16=ν  plan replications and a total workload of 4393.70 h. Starting from this 
solution we have created five scheduling instances, where the operations of 1, 2, 4, 8, or 
all 16 replications are to be scheduled jointly. Accordingly, for the first four instances 
the production schedule arises from concatenating 16, 8, 4, or 2 (sub-)schedules.  
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The results obtained for 
the mixed-integer linear 
programming formulation 
(MILP) and the priority-
rule based method (PR) 
are presented in Table 1. 
For each of the five 
scheduling instances, we 
give the makespans maxC  
of the subschedules and of 
the overall production 
schedule. The CPU times 
refer to the total time needed to generate the production schedule. The results indicate 
that the decomposition approach performs quite well. Compared to the benchmark value 
of 1000 h, the makespan could be significantly improved. Based on the MILP formula-
tion of Section 3, optimal solutions to the operations scheduling problem can be com-
puted within reasonable time for small and medium-sized problem instances. When 
dealing with large-scale instances containing more than 100 operations, the MILP ap-
proach reaches its limits. In contrast, the priority-rule based scheduling method has pro-
vided very good solutions for the large-scale instances within 5 s, the small and me-
dium-sized instances even being solved to optimality. It is worth noting that first, the 
makespans of the subschedules increase sublinearly with the number of operations to be 
scheduled and second, the makespans of the overall production schedules are nearly 
independent of the number of replications. The first observation suggests that the prior-
ity-rule based method scales quite well, while the second one indicates that only a minor 
loss in accuracy is incurred by using the concatenation approach. 
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1 Number of operations per task and replication / number of plan replications / total number of 

operations per replication 

 1/16/161 2/8/32 4/4/64 8/2/128 16/1/256 

Subschedule maxC  73.01 121.03 223.13 — — 

Overall maxC  838.73 835.71 835.71 — — 

M
IL

P 

CPU time [s] 0.28 1.67 190.52 > 9 h > 9 h 

Subschedule maxC  73.01 121.03 223.13 427.32 847.81 

Overall maxC  838.73 835.71 835.71 835.71 847.81 PR
 

CPU time [s] 5.24 5.25 5.26 5.36 5.21 

Table 1. Computational results for the case study of Munawar 
et al. (2003) obtained with the MILP scheduling model and the 
priority-rule based method  


