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Abstract 
An Interval Operability-based approach [1, 2] is applied to calculate operable output 
constraints for the Sheet Forming Control Problem (SFCP) from DuPont.  The SFCP 
attempts to control the sheet thickness at 15 different points, which represent 15 output 
variables, using 9 manipulated variables in the presence of 3 disturbances. Thus, this 
problem represents a computationally complex, high-dimensional non-square system 
with more outputs than inputs. The SFCP is addressed here under two study cases: 1) a 
non-square, where all the 15 outputs are controlled independently of each other; 2) a 
square, where 6 outputs are combined in pairs, or zone variables, and controlled within 
their corresponding zone. Results show that significant reduction of the constrained 
region of process operation can be achieved for different output targets specified. 
Specifically, the hyper-volume ratio of the initial to the designed constrained regions 
range between 103 – 105. The calculated constraints are validated by running 
DMCplusTM (AspenTech) simulations for the extreme values of the disturbances. These 
constraints are intended for use online in model-based controllers (e.g., Model 
Predictive Control) to calculate the tightness with which each of the outputs can be 
controlled.  
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1. Introduction 
In recent years, chemical process designs have increased in complexity due to material 
and energy conservation requirements, integration of units, process optimization and 
stricter environmental regulations. Consequently, tools to systematically assess the 
capabilities of such designs and its integration with the process control structure have 
become increasingly important. These tools should identify a design’s ability to achieve 
the feasible region of operation around a steady-state in the presence of process 
disturbances. Specifically, it is important to determine the tightest feasible set of output 
constraints that can be achieved considering the constraint limitations of the input 
variables, which are design dependent [2]. The improper selection of these output 
constraints can make the controller infeasible when a disturbance moves the process 
outside its usual operating region. Hard constraints are enforced whenever feasible and 
softened whenever it is necessary to retain feasibility [3]. The Operability methodology 
originally introduced for square systems (Set-Point Operability [4]) and extended for 
non-square systems (Interval Operability [1, 2, 5, 6]) enables the systematic selection of 
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such output constraints, so that they are as tight as possible and do not render the 
controller infeasible.  
Using the previously published Interval Operability concepts and algorithms, this paper 
aims to study the constraint characteristics of a Sheet Forming process from DuPont, 
which is characterized by a high-dimensional and non-square system. For such system, 
set-point control is not possible for all the outputs and interval control is necessary. This 
is done by analyzing two configurations of this problem, a 15 x 9 x 3 (outputs x inputs x 
disturbances) non-square system and a simplified 9 x 9 x 3 square sub-system. This 
simplified system is obtained by exploring the distributed characteristics of the SFCP by 
considering 6 zone variables. The presence of disturbances of high magnitude may 
preclude set-point control even for square systems. For such cases, the concept of 
Interval Operability may be equally applicable to calculate the tightest feasible output 
ranges.  

2. Interval Operability Concepts  
The necessary sets to enable the Interval Operability assessment for an n x m x q (outputs 
x inputs x disturbances) system are defined in this section [5]. The Available Input Set 
(AIS) is the set of values that the process input variables can take based on the 
constraints of the process. The Desired Output Set (DOS) is given by the ranges of the 
outputs that are desired to be achieved and the Expected Disturbance Set (EDS) 
represents the expected steady-state values of the disturbances. These sets are 
mathematically represented by: 
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The Achievable Output Set for a specific disturbance value, AOS(d), is defined by the 
ranges of the outputs that can be achieved using the inputs inside the AIS: 

 { }( ) |   ;  ,  fixed d= = + ∈ ∈d y y Gu G d u dAOS AIS EDS  (1) 

where the matrices G and Gd represent the linear steady-state process and disturbance 
gain matrices, respectively. Finally, the Achievable Output Interval Set (AOIS) is 
defined as the tightest possible feasible set of output constraints that can be achieved, 
with the available range of the manipulated variables and when the disturbances remain 
within their expected values. The algorithm developed for the calculation of this 
important set is presented next.   

3. Calculation of AOIS: Linear Programming Approach 
Two sets of output parameters are considered in the AOIS calculation: the steady-state 
target point (y0) and the relative output weights (w). The relative output weights 
represent the relative tightness with which each output will be controlled around its 
desired target and will affect the aspect ratio of the corresponding sides of the designed 
AOIS. For example, an aspect ratio of 1:10 between two outputs assures that one will be 
controlled 10 times more tightly, approximating set-point control. Several examples of 
AOIS calculations using different weights and output targets have been previously 
published [1, 2].  The set of points that characterize the vertices of the AOS can be 
easily calculated by directly mapping the vertices of the AIS and EDS using the linear 
steady-state process model (eq. 1). The calculation of AOIS inℜn is performed by 



  

formulating the interval operability problem in a Linear Programming (LP) framework, 
where the AOS and the AOIS polytopes are described as a system of inequalities in the 
LP formulation. An overview of the algorithm for this calculation, presented in 
reference [6], is the following:  

1) Define the relative weights w1, w2, ... wn that quantify the relative tightness 
within which each output needs to be controlled; 

2) Select one of the extreme disturbance vectors d = di, i = 1, 2, …, k, which 
corresponds to one of the k = 2q vertices of EDS. Calculate AOS(di) (eq. 1) and 
the corresponding linear equalities and inequalities that define this set (see 
details in reference [6]); 

3) Define a family of n-dimensional orthogonal parallelepipeds, P(α), self-similar 
among them, centered at the target value of the outputs (y0), where the scalar α 
affects each of their sizes by the following set of inequalities:  
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4) Calculate the minimum value of α, αi, such that P(αi) and AOS(di) have a 
single common point vi, by solving the LP problem below: 
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5) Repeat steps 2 to 4 above for a total of k = 2q times to calculate the set of k 
points: v1, v2, … vk; 

6) The final AOIS is the smallest orthogonal parallelepiped inℜn that includes all 
the k vi points from the LP solutions (AOIS = OP(v1, v2, v3, … vk)). This set 
defines the tightest set of output constraints that makes the process operable for 
the output target y0 and all the disturbance values inside the EDS. 

4. Results: Sheet Forming Control Problem 
As briefly described above, the objective of the Sheet Forming Control Problem (SFCP) 
is to control the sheet thickness at 15 different points as uniformly as possible around 
different targets (y0). Thus, there are 15 controlled variables (CV’s), which correspond 
to the thicknesses in the cross-direction, with the same relative weight (w). Moreover, 
this process has 9 manipulated variables (MV’s) and 3 disturbance variables (DV’s). 
The steady-state gain model, the sets within which the input and output variables are 
constrained and the relative weights of the output variables are given in the following 
equations: 
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where δy, δu and δd are deviation variables from the steady-state values for the outputs 
(yss), inputs (uss), and disturbances (dss), respectively. The scalar β represents the 
magnitude of the disturbances, all three of which move in tandem. The design of the 
feasible set of output constraints will be performed here by considering the system 
above with its original dimensionality (section 4.1) and a 9 x 9 x 3 square approximation 
(4.2). 
4.1. System with its Original Dimensionality 
To demonstrate the effectiveness of the proposed LP-based approach to handle high-
dimensional non-square systems, the SFCP (eq. 4) is addressed in its full dimensionality 
(15 x 9 x 3). The calculated minimum (ymin) and maximum (ymax) AOIS ranges for each 
controlled variable when β = 12 are shown in the first two rows of Table 1. Because 
sheet-thickness uniformity is desirable, the following conservative set of output 
constraints, representing the widest thicknesses (y10, y11, y13), should be used: 

 { }15 | 2.00 2.20;  1 15iy i= ∈ℜ ≤ ≤ ≤ ≤yAOIS  (5) 



  

Thus, the hyper-volume ratio (HVR) [5] of the original (DOS) to the designed (AOIS) 
constrained regions is: HVR = (0.4/0.2)15 = 3.28 x 104. Hence, for the assumed 
disturbance values, this process could be feasibly operated within a constrained region 
that is significantly tighter than the one initially specified. These designed new limits 
were validated by running DMCplusTM (AspenTech) simulations for the extreme values 
of the disturbances, showing that the MPC controller does not violate these limits at the 
steady-state. Furthermore, the computational time for the AOIS calculation was only 
0.18 seconds (Dell PC with a 3.0-GHz Intel Pentium 4 processor).  If tighter control of 
the overall sheet thickness is intended, process modifications should be performed to 
enlarge the AIS, and thus shrink the AOIS, availing tighter control of y10, y11, and y13, at 
least.  
4.2. Square Approximation 
Consider now a 9 x 9 x 3 square approximation of the SFCP, where the objective is to 
control each of the 9 outputs at ranges within the DOS using 9 inputs. In this case, it is 
assumed that the sheet thicknesses are controlled at specified zones, which are 
represented by the following set of zone variables (z): 
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where y8 (z5) corresponds to the measurement at the center of the sheet. The zone 
variables have the same DOS limits, relative weights and the target values of the initial 
output variables. The solution of this approximated problem also provides an alternative 
way to calculate the achievable constraints for the output variables using the properties 
of this distributed process. 
The AOIS calculation is performed setting again β = 12, which corresponds to its 
maximum value. The following AOIS ranges are obtained for this case: 
 { }9 | 2.04 2.16;  1 9,  12iz i= ∈ℜ ≤ ≤ ≤ ≤ =z βAOIS  (7) 

Here as well, the most conservative set of constraints is used, to guarantee feasibility 
and sheet uniformity, which corresponds to the limits of z5, z6, z7 and z8 (see Table 1). 
Observe that once again very tight control can be achieved, which is demonstrated by 
the high value of the ratio between the hyper-volumes of the original constrained region 
and the designed constrained region (HVR = 5.08 x 104). This implies that for the 
assumed disturbance values, the process could be operated feasibly within a constrained 
region 5.08 x 104 tighter than the region initially specified by the DOS. 
Because different targets for the sheet thickness are intended, the zone target will now 
be moved from its nominal value of 2.1 units to 2.0 units. For this target, the AOIS 
ranges for the zone variables obtained when the disturbance range is equal to -12 ≤ d1 ≤ 
12 (β = 12) are the following: 
 { }9 |1.92 2.08;  1 9,  12iz i= ∈ℜ ≤ ≤ ≤ ≤ =z βAOIS  (8) 

Thus, for the specified conditions, the original constrained region could be again 
significantly reduced (HVR = 3.81 x 103). As in the previous case, the results for this 
target of 2.0 units correspond to the conservative set of constraints, representing the 
widest calculated thicknesses among the zones. 
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To conclude the analysis for this process example, the typical computational time for 
the AOIS calculations of all cases was 0.19 seconds. Here as well, simulations were 
performed using DMCplus to validate the results for all cases. Finally, observe that the 
simplification of a non-square system by a square one provides a less realistic 
calculation of the AOIS (eqs. 5 and 7). In fact, if the results obtained for the zone 
variables were used for the outputs within the corresponding zone, then infeasibilities 
would occur for some outputs.  
Table 1.  Feasible output ranges (AOIS) calculated for the SFCP (β = 12). The output variables 
for the original problem with 15 outputs, 9 inputs and 3 disturbance variables, are represented 
with y. The zone variables for the simplified square problem are represented with z. 

yi/zi i=1 2,3 4 5,7 6 8 9 10,11,13 12 14 15 

ymin 2.05 2.03 2.04 2.08 2.04 2.06 2.08 2.00 2.10 2.05 2.01 

ymax 2.15 2.17 2.16 2.12 2.16 2.14 2.12 2.20 2.10 2.15 2.19 

zmin 2.09 2.09 2.10 2.04 2.04 2.04 2.09     

zmax 2.11 2.11 2.10 2.16 2.16 2.16 2.11     

5. Conclusions 
Interval Operability concepts were applied to calculate the tightest feasible set of output 
constraints for the Sheet Forming Control Problem (SFCP). By considering two 
different configurations of this problem, square and non-square, different sets of 
constraints were obtained.  Results for both scenarios showed that significant constraint 
reduction can be achieved for the initial set of output constraints without rendering the 
control problem infeasible in the presence of process disturbances. Although the use of 
zone variables reduces the complexity of the problem, the results obtained using this 
configuration are less accurate than the ones calculated by addressing the problem in its 
full dimensionality. The square nature of the simplified problem provides tighter 
feasible ranges for the zone variables than the constraints calculated for the individual 
output variables when the non-square problem is solved.  If the calculated ranges of the 
zone variables were to be used to define the ranges of all 15 measured outputs, in a 15 x 
9 MPC (or DMC) controller, infeasibilities would occur. The minimal computational 
time required for the corresponding calculations enables the online adaptation of the 
controller constraints depending on the current state of the process. 
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