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Abstract 
In this paper, we present a method for the fault detection and isolation based on the residual 
generation. The main idea is to reconstruct the outputs of the system from the measurement using 
the extended Kalman filter. The estimations are compared to the values of the reference model 
and so, deviations are interpreted as possible faults. The reference model is simulated by the 
dynamic hybrid simulator, PrODHyS. The use of this method is illustrated through an application 
in the field of chemical process. 
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1. Introduction 
In a very competitive economic context, the reliability of the production systems can be 
a decisive advantage. This is why, the fault detection and diagnosis are the purpose of a 
particular attention in the scientific and industrial community. The major idea is that the 
defect must not be undergone but must be controlled. Nowadays, these functions remain 
a large research field. The literature quotes as many fault detection and diagnosis 
methods as many domains of application (Venkatasubramanian, et al., 2003). A notable 
number of works has been devoted to fault detection and isolation, and the techniques 
are generally classified as: 
• Methods without models such as quantitative process history based methods (neural 

networks (Venkatasubramanian, et al., 2003), statistical classifiers  (Anderson, 
1984)), or qualitative process history based methods (expert systems 
(Venkatasubramanian, et al., 2003)), 

• And model-based methods which are composed of quantitative model-based 
methods (such as analytical redundancy (Chow and Willsky, 1984), parity space 
(Gertler and Singer, 1990), state estimation (Willsky, 1976), or fault detection filter 
(Franck, 1990)) and qualitative model-based methods (such as causal methods: 
digraphs (Shih and Lee, 1995), or fault tree (Venkatasubramanian, et al., 2003)). 

In this paper, the proposed approach to fault detection and isolation is a model-based 
approach. The first part of this communication focuses on the main fundamental 
concepts of the simulation library PrODHyS, which allows the simulation of the system 
reference model of a typical process example. Then, the proposed detection approach is 
presented. This exploits the extended Kalman Filter, in order to generate a fault 
indicator. In the last part, this approach is exploited through the simulation of the 
monitoring of a didactic example.  
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2. PrODHyS environment  
The research works performed for several years within the PSE research department 
(LGC) on process modelling and simulation have led to the development of PrODHyS. 
This environment provides a library of classes dedicated to the dynamic hybrid 
simulation of processes. Based on object concepts, PrODHyS offers extensible and 
reusable software components allowing a rigorous and systematic modelling of 
processes. The primal contribution of these works consisted in determining and 
designing the foundation buildings classes.  
The last important evolution of PrODHyS is the integration of a dynamic hybrid 
simulation kernel (Perret et al., 2004 ; Olivier et al., 2006, 2007). Indeed, the nature of 
the studied phenomena involves a rigorous description of the continuous and discrete 
dynamic. The use of Differential and Algebraic Equations (DAE) systems seems 
obvious for the description of continuous aspects. Moreover the high sequential aspect 
of the considered systems justifies the use of Petri nets model. This is why the Object 
Differential Petri Nets (ODPN) formalism is used to describe the simulation model 
associated with each component. It combines in the same structure a set of DAE systems 
and high level Petri nets (defining the legal sequences of commutation between states) 
and has the ability to detect state and time events. More details about the formalism 
ODPN can be found in previous papers (Perret et al., 2004). 

3. The supervision module 
Nowadays, for reasons of safety and performance, monitoring and supervision have an 
important role in process control. The complexity and the size of industrial systems 
induce an increasing number of process variables and make difficult the work of 
operators. In this context, a computer aided decision-making tool seems to be wise. 
Nevertheless the implementation of fault detection and diagnosis for stochastic system 
remains a challenging task. Various methods have been proposed in different industrial 
contexts (Venkatasubramanian et al., 2003). 
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Figure 1. Supervision Architecture 
For this purpose, the simulation model of PrODHyS is used as a reference model to 
implement the functions of detection and diagnosis. The supervision module must be 
able to detect the faults of the physical systems (leak, energy loss, etc.) and the faults of 
the control/command devices (actuators, sensors, etc.). As defined in (De Kleer et al., 
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1984), our approach is based on the hypothesis that the reference model is presumed to 
be correct. The global principle of this system is shown in Figure 1, where the sequence 
of the different operations is underlined. Moreover, a distinction between the on-line 
and off-line operations is made. Our approach is composed of three parts: the generation 
of the residuals, the generation of the signatures and the generation of the fault 
indicators. 

3.2. The generation of the residuals 
The first part concerns the generation of the residuals (waved pattern in the Figure 1). In 
order to obtain an observer of the physical system, a real-time simulation is done in 
parallel. So, a complete state of the system will be available at any time. Thus, it is 
based on the comparison between the predicted behavior obtained thanks to the 
simulation of the reference model (values of state variables) and the real observed 
behavior (measurements from the process correlated thanks to the Extended Kalman 
Filter). The main idea is to reconstruct the outputs of the system from the measurement 
and to use the residuals for fault detection (Mehra and Peschon, 1971, Welch and 
Bishop, 1995, Simani and Fantuzzi, 2006). A description of the extended Kalman filter 
can be found in (Olivier-Maget et al., 2007). Besides the residual is defined according 
to the following equation: 
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where Xi is the state variable, iX̂  is the estimated state variable with the extended 

Kalman Filter and n is the number of state variables. Note that the generated residual 

( )trir  is relative. As a matter of fact, this allows the comparison of a residual of a 

variable with a residual of an other one, since the residual become independent of the 
physical size of the variable. 

3.3. The generation of the signatures 
The second part is the generation of the signatures (doted pattern in the Figure 1). This 
is the detection stage. It determinates the presence or not of a default. This is made by a 

simple threshold, ( )tiε . The generated structure S( )trN
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equation: 

S ( )= trN
i

( ) ( )( )[ ]
( ) ( )( )[ ] { }n,iavec

;t'trMax

;t'trMax

n

k
k

r
k

i
r
i

1

0

0

1

∈
ε−

ε−

∑
=

 (Eqn. 2.) 

with ( ) ( )
( )tX

'
i

i
i

t
 t

ε
=ε , where iε is the detection threshold. The value of iε is chosen 

according to the model error covariance matrix of the Extended Kalman Filter. 

3.4. The generation of the fault indicators 
The last part deals with the diagnosis of the fault (hatched pattern in the Figure 1). The 
signature obtained in the previous part is compared with the theoretical fault signatures 
by means of distance. A theoretical signature T•,j of a particular default j is obtained by 
experience or in our case, by simulations of the process with different occurency dates 
of this fault. Then, a fault indicator is generated. For this, we define two distances: the 
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relative Manhattan distance and the improved Manhattan distance. The first distance is 
denoted by the following expression: 
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The second distance, which allows the diagnosis of many simultaneous faults, is 
denoted by the following expression: 
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where n′  is the number of non-zero elements of the theoretical default signature T•,j and 

m′  is the number of non-zero elements of the default signature S ( )trN . 

4. Application: the adding-evaporation unit operation 

4.1. Description 
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Figure 2. The studied process    Table 1. The operating conditions 

The process of adding-evaporation is generally used to change solvents. Its recipe 
describes a succession of evaporations and adding of the new solvent. This process is 
studied here (Figure 2). The operation conditions are listed in the Table 1. The values of 
the minimum and maximum holdups are respectively 200 and 800 moles. Before each 
adding of solvent, the reactor is cooled up to the temperature of 300,15K. The pressure 
is supposed to be constant during this operation. The goal of this process is to have a 
molar composition of methanol in the reactor at 0,95.  

4.2. Results 
The behavior of this process is governed by thermal phenomena. A default of the 
reactor thermal system can damage the success of this operation. That is why, it is 
important to detect it as soon as possible. 

4.2.1. Detection results 
We remind that the thresholds for the detection correspond to the model uncertainties 
obtained by the adjustment of the Extended Kalman filter. A default of the reactor 
heating energy feed is introduced at t = 20 min. This energy feed provides a heat 
quantity lower than the nominal one. Figure 3 shows the detection stage. It illustrates 
the evolution of the residuals linked to the liquid composition of water and methanol. 
From t = 80 min, the values of the both residuals underline the abnormal behavior of the 
process. The diagnosis is launched at t = 95 min.  
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Figure 3. The evolutions of the composition residuals during the evaporation stage 

4.2.2. Diagnosis results 
The residual is then estimated and we obtain the 
corresponding instantaneous default signature (Table 2).  
 Notice that the exploited signature in this approach is non 
binary, in order to quantify the deviation due to the default. 
The construction of the theoretical fault signatures is based 
on numerous simulations, in which one of the defaults 
exposed in the Table 3 is generated. We compare the 
instantaneous fault signature (Table 2) with the theoretical 
fault signatures, by calculating the relative and improved 
Manhattan distances (Eqn. 3. and 4.). Then, the fault 
indicators are generated (Table 3). They correspond to the 
complement to 1 of these distances.  

Default 9

Default 8

Default 7

Default 6

Default 5

Default 4

Default 3

Default 2

Default 1

0,6450,71428571
The heating energy feed of the reactor has a temperature 

lower than the nominal one.

0,6450,71714286
The material feed provides material with a degraded flow 

rate.

0,640,71428571
The temperature sensor detects a value higher than the 

nominal value.

0,71049610,71554566
The temperature sensor detects a value lower than the 

nominal value.

0,72549610,71554566
The up holdup sensor detects a value lower than the 

nominal value.

0,753307350,99819303
The heating energy feed provides a heat quantity lower 

than the nominal value.

0,71049610,71554566
The energy feed used for the cooling of the reactor has a 

temperature higher than the nominal one.

0,5850,71428571
The energy feed used to the cooling of the reactor 

provides a heat quantity lower than the nominal value.

0,6050,71428571
The up holdup sensor detects a value higher than the 

nominal value.

Manhattan 
improved indicator

Manhattan 
relative indicator
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The heating energy feed of the reactor has a temperature 

lower than the nominal one.
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The material feed provides material with a degraded flow 

rate.
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The temperature sensor detects a value higher than the 

nominal value.

0,71049610,71554566
The temperature sensor detects a value lower than the 

nominal value.

0,72549610,71554566
The up holdup sensor detects a value lower than the 

nominal value.

0,753307350,99819303
The heating energy feed provides a heat quantity lower 

than the nominal value.

0,71049610,71554566
The energy feed used for the cooling of the reactor has a 

temperature higher than the nominal one.

0,5850,71428571
The energy feed used to the cooling of the reactor 

provides a heat quantity lower than the nominal value.

0,6050,71428571
The up holdup sensor detects a value higher than the 

nominal value.

Manhattan 
improved indicator

Manhattan 
relative indicator

 
Table 3. The default indicators of the example 
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The relative Manhattan indicator detects the presence of the fault 7 with a probability of 
99,8%. Nevertheless, any default is discriminated, since their indicators are higher than 
0,68. 0,69 is the fixed criterion, which corresponds to the probability at the standard 
deviation according to the normal distribution. In the opposite, with the improved 
Manhattan indicator, the defaults 1, 3, 5,6 and 9 are eliminated, since their indicators are 
lower than 0,68. The four possibilities are these defaults 2, 4, 7 and 8. This example 
underlines the importance to the use of the both indicators to be able to conclude. So, by 
combining the results of the both indicators, we can rule on the presence of the default 
7, since their indicators are the maximums. For this reason, this default is the most 
probable. So, the default is located on the energy feed of the reactor. Furthermore, it has 
been identified: the heating energy feed of the reactor provides a heat quantity lower 
than the nominal value. 

5. Conclusion 
In this research work, the feasibility of using the simulation as a tool for fault detection 
and diagnosis is demonstrated. The method developed in this PhD rests on the hybrid 
dynamic simulator PrODHyS. This simulator is based on an object oriented approach. 
The fault detection and diagnosis approach, developed here, is a general method for the 
detection and isolation of the occurency of a fault. Besides, this approach allows the 
detection of numerous types of fault and has the ability to underline the simultaneous 
occurency of many faults. The works in progress aim at integrating this simulation 
model within a model-based supervision system. The goal is to define a recovery 
solution following the diagnosis of a default. For this, we exploit the results of 
signatures in order to generate qualitative information. For example, with these results, 
we have the ability to distinguish a simple degradation and a failure. Next, we combine 
our diagnosis approach with an other method, such as classification or case-based 
reasoning. 
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