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Abstract

In this paper, we present a method for the fauleat®mn and isolation based on the residual
generation. The main idea is to reconstruct thpudatof the system from the measurement using
the extended Kalman filter. The estimations are ganmad to the values of the reference model
and so, deviations are interpreted as possibldastalihe reference model is simulated by the
dynamic hybrid simulatoi2rODHyS The use of this method is illustrated throughapplication

in the field of chemical process.
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1. Introduction

In a very competitive economic context, the religbof the production systems can be
a decisive advantage. This is why, the fault degacnd diagnosis are the purpose of a
particular attention in the scientific and industicommunity. The major idea is that the
defect must not be undergone but must be contrdlediadays, these functions remain
a large research field. The literature quotes asynfault detection and diagnosis
methods as many domains of application (Venkatasuoanian, et al., 2003). A notable
number of works has been devoted to fault detedimh isolation, and the techniques
are generally classified as:

* Methods without models such as quantitative probéstery based methods (neural
networks (Venkatasubramanian, et al., 2003), stils classifiers (Anderson,
1984)), or qualitative process history based methotexpert systems
(Venkatasubramanian, et al., 2003)),

« And model-based methods which are composed of ba#wve model-based
methods (such as analytical redundancy (Chow anidski/j 1984), parity space
(Gertler and Singer, 1990), state estimation (\W§llsL976), or fault detection filter
(Franck, 1990)) and qualitative model-based meth@ieh as causal methods:
digraphs (Shih and Lee, 1995), or fault tree (Veéakabramanian, et al., 2003)).

In this paper, the proposed approach to fault diete@and isolation is a model-based

approach. The first part of this communication fs on the main fundamental

concepts of the simulation libraBrODHyS which allows the simulation of the system
reference model of a typical process example. Ttienproposed detection approach is
presented. This exploits the extended Kalman Filterorder to generate a fault
indicator. In the last part, this approach is eiptb through the simulation of the
monitoring of a didactic example.



2 N. Olivier-Maget et al.

2. PrODHYyS environment

The research workperformed for several years within tiRSE research department
(LGC) on process modelling and simulation have led éodévelopment oPrODHYS.
This environment provides a library of classes datdid to the dynamic hybrid
simulation of processes. Based ohject conceptsPrODHYyS offers extensible and
reusable software components allowing a rigoroud agstematic modelling of
processes. The primal contribution of these worksasisted in determining and
designing the foundation buildings classes.

The last important evolution dPrODHyS is the integration of a dynamic hybrid
simulation kernel (Perredt al, 2004 ; Olivieret al, 2006, 2007). Indeed, the nature of
the studied phenomena involves a rigorous desoripaf the continuous and discrete
dynamic. The use oDifferential and Algebraic Equation§DAE) systems seems
obvious for the description of continuous aspeklisteover the high sequential aspect
of the considered systems justifies the use ofi Rets model. This is why th@bject
Differential Petri Nets (ODPNYormalism is used to describe the simulation model
associated with each component. It combines isdnee structure a set DAE systems
and high level Petri nets (defining the legal semes of commutation between states)
and has the ability to detestate and time eventsMore details about the formalism
ODPNcan be found in previous papers (Peetedl., 2004).

3. The supervision module

Nowadays, for reasons of safety and performancajtoring and supervision have an
important role in process control. The complexitydahe size of industrial systems
induce an increasing number of process variables ranke difficult the work of
operators. In this context, a computer aided dewisniaking tool seems to be wise.
Nevertheless the implementation of fault detectiod diagnosis for stochastic system
remains a challenging task. Various methods haea Ipeoposed in different industrial
contexts (Venkatasubramanianal, 2003).

3.1. Architecture
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Figure 1. Supervision Architecture
For this purpose, the simulation modelRfODHyS s used as a reference model to
implement the functions of detection and diagno§tse supervision module must be
able to detect the faults of the physical systdeek( energy loss, etc.) and the faults of
the control/command devices (actuators, sensag, és defined in (De Kleeet al,
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1984), our approach is based on the hypothesighbateference model is presumed to
be correct. The global principle of this systershewn in Figure 1, where the sequence
of the different operations is underlined. Moregwerdistinction between the on-line
and off-line operations is made. Our approach ispased of three parts: the generation
of the residuals, the generation of the signataed the generation of the fault
indicators.

3.2.The generation of the residuals

The first part concerns the generation of the redi(waved pattern in the Figure 1). In
order to obtain an observer of the physical systemeal-time simulation is done in
parallel. So, a complete state of the system wvéllalvailable at any time. Thus, it is
based on the comparison between the predicted lmehabtained thanks to the
simulation of the reference model (values of staeables) and the real observed
behavior (measurements from the process correldi@aks to the Extended Kalman
Filter). The main idea is to reconstruct the owmftthe system from the measurement
and to use the residuals for fault detection (Meanal Peschon, 1971, Welch and
Bishop, 1995, Simani and Fantuzzi, 2006). A desiatipof the extended Kalman filter
can be found in (Olivier-Magedt al, 2007). Besides the residual is defined according
to the following equation:

()= X;(0)-x; ()

r; (t Xi(t) avec iD{l,n} (Egn. 1.)

12
where X; is the state variablef(i is the estimated state variable with the extended
Kalman Filter anch is the number of state variables. Note that theegged residual
rir(t) is relative. As a matter of fact, this allows tbemparison of a residual of a

variable with a residual of an other one, sincerf®dual become independent of the
physical size of the variable.

3.3.The generation of the signatures
The second part is the generation of the signafalet®d pattern in the Figure 1). This
is the detection stage. It determinates the presenaot of a default. This is made by a

simple threshold.g;(t). The generated structurel’S(t)is denoted by the following
equation:

Max

It () -2 ()0

S;’N (t): - avec iD{l,n} (Eqgn. 2.)
% Max | [ )~ ()0
k=1
with ¢&'; (t): ;((t)) where ¢, is the detection threshold. The value ©fis chosen
i\t

according to the model error covariance matrixhef Extended Kalman Filter.

3.4.The generation of the fault indicators

The last part deals with the diagnosis of the féhdtched pattern in the Figure 1). The
signature obtained in the previous part is comparitldl the theoretical fault signatures
by means of distance. A theoretical signatwgeol a particular defaultis obtained by
experience or in our case, by simulations of treeg@ss with different occurency dates
of this fault. Then, a fault indicator is generat€dr this, we define two distances: the
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relative Manhattan distance and the improved Maahatistance. The first distance is
denoted by the following expression:
< riN _
N z SIN (1) -1y
pr() =il (Eqn. 3.)

n

The second distance, which allows the diagnosismahy simultaneous faults, is
denoted by the following expression:

i‘sbﬂv (t)xm' _TL] Xn" UL]
Df’Wu (t) — i=l

- (Egn. 4.)
n

is the number of non-zero elements of the thezaktiefault signature.Tand
m' is the number of non-zero elements of the defsigttature $" (t).

r

wheren

4. Application: the adding-evapor ation unit operation

4.1.Description

T

Fy l reactor Reactor | Material Feed
e . T (K) 298,15 298,15
Uy | P (atm) 1 1
X5 ean 0,6 0,01
U XB=méthanol 0,4 0,99
ap g U, (mol) 300
W Flow rate (mol/min) - 5
Figure 2. The studied process Table 1. The t¢ipgraonditions

The process of adding-evaporation is generally usedhange solvents. Its recipe
describes a succession of evaporations and addlitige mew solvent. This process is
studied here (Figure 2). The operation conditiaesliated in the Table 1. The values of
the minimum and maximum holdups are respectively &3d 800 moles. Before each
adding of solvent, the reactor is cooled up totémperature of 300,15K. The pressure
is supposed to be constant during this operatitve. oal of this process is to have a
molar composition of methanol in the reactor a60,9

4.2.Results

The behavior of this process is governed by therptenomena. A default of the
reactor thermal system can damage the succesdsobpleration. That is why, it is
important to detect it as soon as possible.

4.2.1.Detection results

We remind that the thresholds for the detectiorrespond to the model uncertainties
obtained by the adjustment of the Extended Kalmitter.f A default of the reactor
heating energy feed is introduced at t = 20 minis Ténergy feed provides a heat
quantity lower than the nominal one. Figure 3 shties detection stage. It illustrates
the evolution of the residuals linked to the lig@iemposition of water and methanol.
From t = 80 min, the values of the both residualdeuline the abnormal behavior of the
process. The diagnosis is launched at t = 95 min.
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Figure 3. The evolutions of the composition reslgluuring the evaporation stage

4.2.2.Diagnosis results

s; | 0,0044098 The residual
s, | 0,49367559

s, | 0,50191462

Sy 0

55 0

86 0

s, 0

is then estimated and we obtain the
corresponding instantaneous default signature €r2pl

Notice that the exploited signature in this appto#& non
binary, in order to quantify the deviation due he tefault.

The construction of the theoretical fault signasui® based

on numerous simulations, in which one of the dagaul
exposed in the Table 3 is generated. We compare the
instantaneous fault signature (Table 2) with theothtical
fault signatures, by calculating the relative antpiioved
Manhattan distances (Eqn. 3. and 4.). Then, thdt fau

Table 2. Thénstantaneous indicators are generated (Table 3). They correspionite

fault signature

complement to 1 of these distances.

Manhattan Manhattan
relative indicator | improved indicator

Default 1 The up holdup sensor dt'etects a value higher than the 0.71428571 0.605
nominal value.

Default 2 The up holdup sensor d.etects a value lower than the 0.71554566 07254961
nominal value.

Default 3 The temperature sensor ('letects a value higher than the 0.71428571 0.64
nominal value.

Default 4 The temperature sensor 'detects a value lower than the 0.71554566 0.7104961
nominal value.

Default 5 The material feed provides n;aterial with a degraded flow 0.71714286 0.645

rate.
Default 6 The heating energy feed of the Ieaj:tor has a temperature 071428571 0,645
lower than the nominal one.
Default 7 The heating energy feed prodees a heat quantity lower 0,99819303 0.75330735
than the nominal value.
Default 8 The energy feed used.for the cooling of tl'le reactor has a 0.71554566 0.7104961
temperature higher than the nominal one.
Default 9 T%le energy feed lle.:d to the cooling of the .Ieactor 071428571 0.585
provides a heat quantity lower than the nominal value.

Table 3. The default indicators of the example
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The relative Manhattan indicator detects the preserf the fault 7 with a probability of
99,8%. Nevertheless, any default is discriminasite their indicators are higher than
0,68. 0,69 is the fixed criterion, which correspsrd the probability at the standard
deviation according to the normal distribution. tlre opposite, with the improved
Manhattan indicator, the defaults 1, 3, 5,6 andeQetiminated, since their indicators are
lower than 0,68. The four possibilities are theséadlts 2, 4, 7 and 8. This example
underlines the importance to the use of the balitators to be able to conclude. So, by
combining the results of the both indicators, we nae on the presence of the default
7, since their indicators are the maximums. Fos tigiason, this default is the most
probable. So, the default is located on the enfggyg of the reactor. Furthermore, it has
been identified: the heating energy feed of thetmaprovides a heat quantity lower
than the nominal value.

5. Conclusion

In this research work, the feasibility of using Simulation as a tool for fault detection
and diagnosis is demonstrated. The method develwp#ds PhD rests on the hybrid
dynamic simulator PrODHyS. This simulator is basedan object oriented approach.
The fault detection and diagnosis approach, deeeldyere, is a general method for the
detection and isolation of the occurency of a faBksides, this approach allows the
detection of numerous types of fault and has thktyabo underline the simultaneous
occurency of many faults. The works in progress ainmintegrating this simulation
model within a model-based supervision system. @bel is to define a recovery
solution following the diagnosis of a default. Ftris, we exploit the results of
signatures in order to generate qualitative infaroma For example, with these results,
we have the ability to distinguish a simple degtadeaand a failure. Next, we combine
our diagnosis approach with an other method, sigltlassification or case-based
reasoning.
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