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Abstract

The application of model reduction techniques ia tlontext of dynamic optimization

of chemical plants operation is investigated. Toeug is on the derivation and use of
reduced models for the design and implementatiooptimal dynamic operation in

large-scale chemical plants. The recommended puseeds to apply the model

reduction to individual units or groups of unitglléwed by the coupling of these

reduced models, to obtain the reduced model opl#uet. The procedure is flexible and
accurate and leads to a major reduction of thelaiion time.
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1. Introduction

The strong competition in the industrial environmemowadays demands for
economical operation of chemical plants. This gaal be achieved in two ways, which
do not exclude each other. One approach is to memdisly respond to the market
conditions through dynamic operation. A second apgh is to develop control systems
that maintain the steady state or implement thengptdynamic behaviour. For the first
approach, the economical optimality is achievedufjh dynamic optimization. For the
second approach, the development of the plantwodéral structures to achieve stable
operation is of paramount importance.

However, both approaches presented above requivandyg models of the chemical
plant. The quality of the model is crucial for amling the objective: the model must
represent the plant behaviour with good accuraay tie complexity must be limited
because both applications require repeated solutiaring limited time. Another
requirement is that the model is easy to be maiathiand adapted to future plant
changes.

The order-reduction of the process model couldradfsolution. Several linear [1] and
nonlinear techniques [2] have been developed aenl #pplication to different case
studies reported. Although significant reductiorth@® number of equations is achieved,
the benefit is often partial, because the structfrédhe problem is destroyed, the
physical meaning of the model variables is lost toede is little or no decrease of the
solution time [3].

In this contribution, the derivation of the optinwintrol profiles is realised by using a
reduced model obtained through the model reduetitin process knowledge approach.
The procedure takes into account the inherenttstrei¢hat exists in a chemical plant in
the form of units or groups of units that are carted by material and energy streams.
This decomposition mirrors the decentralization ftbfe control problem. The
recommended procedure is to apply model reductiomdividual units, and then to
couple together these reduced models. The techmidiuee applied to a case study: the
iso-butane alkylation plant.
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2. Approachesto dynamic optimization

The objective of the dynamic optimization is toatetine, for a dynamic system, a set
of decision variable time profiles (pressure, terapge, flowrate, heat duty etc.) that
optimise a given performance criterion, subject dpecified constraints (safety,

environmental and operating constraints).

The dynamic optimization problem of interest insthiontribution can be stated as
follows:

t
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In this formulation, x(t) are state (dependent) variablegt) are control (independent)
variables andz(t) are algebraic variables, whilpare time-independent parameters.

The dynamic models of chemical processes are repres by differential-algebraic

equations (DAEs). Equation (2) and (3) define sadystem. Equations (4), (5) and (6)
are the path constraints on the state variablegraovariables and algebraic variables
respectively, while equation (7) represents théaincondition of the state variables.

Obj is a scalar objective function at final timig, .

The most common approach to DAE-based optimizagiroblems is the transformation
of the infinite-dimensional dynamic problem into faite-dimensional nonlinear
programming problem (NLP) [4]. Two main approachase been developed in order
to make this transformation.

The first one is to decompose the dynamical sysi#m the control and the state
spaces. In the next step, only the control varg@ble discretized and remain as degrees
of freedom for the NLP solver [5]. The method idled the sequential approach. The
DAE system has to be solved at each NLP iterafitwe. disadvantages of the approach
are: problems of handling path constraints on th&esvariables, since these variables
are not included directly in the NLP solver [5]ettime needed to reach a solution can
be very high in case the model of the dynamic systetoo complex; difficulties may
arise while handling unstable systems [4].

In the second approach, both the state and theatomatriables are discretized. In this
way, a large-scale NLP problem is obtained, butDA& system is solved only once, at
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the optimal point. In this way, the disadvantagdsth® sequential approach are
eliminated, but there is still the issue of hangllihe problem size [4].

In the recent years, a new approach has been geeldor eliminating this
disadvantage [5]. This approach is called the gseguential approach and takes the
advantages of both the sequential and the simdten@pproaches: since both the
control and the state variables are discretizedptith constraints for the state variables
can be handled; the DAE system is integrated ontepso the computation becomes
more efficient.

3. Model reduction for dynamic optimization

As seen in the previous chapter, all the approaamsed to solve the dynamic
optimization problem integrate, at some point, dy@amical system of the chemical
process. In order to obtain more efficiently théuea of the optimum profile of the
control variable, a suitable model of the systemusth be developed. That means that
the complexity of the model should be limited, botthe same time, the model should
represent the plant behaviour with good accurabg. Gest way to obtain such a model
is by using the model reduction techniques. Howetlee use of a classical model
reduction approach is not always able to lead &wlation [6]. And very often, the
physical structure of the problem is destroyed.sThiobe procedure has to be performed
taking into account the process knowledge (undsjmonents, species etc.).

In the following chapter, the application of the aebreduction with process knowledge
for the dynamic optimization will be presented. SWill be done by means of a case
study: theiso-butane alkylation plant.

3.1. Theiso-butane alkylation plant

The alkylation ofiso-butane is a widely used method for producing hagtane
blending component for gasoline. For the purposthisfstudy, the following reactions
capture the overall chemistry:

C,Hg+i-CH, - i-CH ©)

C,Hyg +i “CgHg - C H 5 9)

Figure 1. Thaso-butane alkylation plant.

The reactions are exothermic and occur in liquidsgh The secondary reaction (9) has
large activation energy, therefore high selectiidtyavoured by low temperatures. The

cooling is achieved in an external heat-exchanbee. second reaction is suppressed by
keeping the concentration of butene low. Therefarlarge excess afo-butane is fed

to the reactor. From the reactor effluent, thetlighpurities, reactants, products and

heavy products are separated by distillation amibred or recycled.
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The plantwide control structure (Figure 2) is tlaene as the one determined to have a
stable behaviour in [6]: the flowrate of the frelshtene is specified, while thiso-
butane is introduced by inventory control.
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Figure 2. The proposed plantwide control strucfargheiso-butane alkylation plant.

Local control is also present: the reactor is ogerat constant volume and temperature,
while for the distillation columns, the levels, psere, and top and level compositions
are controlled.

The objective of the dynamic optimization problehogld be stated before the model
reduction is performed, in order to choose thetrigiriables to be kept in the reduced
model. The objective of the dynamic optimizationlgem will be stated as follows:
Increase the plant production by 20% with minimal energy consumption in the
distillation columns.

It should be mentioned that this focus on energy @ad to a long transition period.

3.2. Reduced model

The full nonlinear model is developed using Aspepn&mics. For obtaining the
reduced model, the same procedure presented is [ed. However, in this case the
reduced model will be developed using gProms.

First of all, the plant flowsheet is split into tsi group of units. The splitting it is done
in units to which local control is applied: the cega (plus the heat exchangers around
it), the distillation columns, mixing vessels, pwn@ince the mixers and the pumps are
considered instantaneous (no dynamics) they aratevesting for the model reduction.
Further, the units are individually reduced.

Since the reactor has a strong nonlinear behavibarmodel simplification is used. A
dynamic model is written using gProms, consistifidive component balances, and
considering constant temperature and physical ptiepe

For the distillation columns, linear model-ordeduetion will be used. The linear
model is obtained in Aspen Dynamics. Some modificet to the previous study have
been done to the linear models, in order to hagedboiler duty and the reflux ratio as
input or output variables of the linear models.sTts needed to have access to those
variables in the reduced model, for the purpos®fdynamic optimization. A balanced
realization of the linear models is performed intlsla. The obtained balanced models
are then reduced. The reduced models of the distii columns are further
implemented in gProms. When all the reduced modélshe individual units are
available, these models are further connectedderaio obtain the full reduced model
of the alkylation plant. The outcome of the modeduction procedure is presented in
Table 1, together with some performances of theaged model.
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Table 1. The model reduction of ttee-butane alkylation plant

Unit  Model reduction technique Full nonlinear model Reduced model

CSTR Model simplification 15 states 5 states
CcoL1 Model order-reduction 188 states 25 states
CcoL2 Model order-reduction 194 states 29 states
COL3 Model order-reduction 169 states 17 states
Simulation time 150 seconds 2 seconds

3.3. Dynamic optimization

After the reduced model is obtained, the dynamitapation problem (equations (1) —
(7)) is implemented in gProms. The single shootimghod is used.

The objective function to be minimised is the suitle reboiler duties in the
distillation columns. Two control variables are simtered: the flowrate of the fresh feed

of butene F,,) and the flowrate of the first mixer's outlet stre (F, ), which are also

the variables on flow control in the plantwide agohstructure (Figure 2).

After the 20% increase in the production is achigvbke optimizer is asked to ensure a
new steady state is reached and the productioeps ¢onstant for a while. The two

control variables are discretized into 25 time rivés. The size of the first 20 intervals

is free, while for the last 5 it is fixed.

A selectivity constraint is imposed, in order tointain the formation of the secondary
products at a low value. All the constraints ateodiuced as inequality type constraints.

Optimum profile|

Initial profile Optimum profile
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Figure 3. The optimum control profiles for: a) t@mponent A fresh feed flowrate; b) the recycle
flowrate.

The optimum profiles of the control variables (Fig3) are obtained after several time-
consuming, trial-and-error iterations. The solutwes obtained after a number of about
150 manual iterations, not taking into accountitarations performed by the solver. In
each manual iteration, the initial profile was nfml by the user, while the solver is
trying to optimize this profile. The advantage aving a reduced model at this point is
obvious.

Further, the optimum profiles were implemented iAgpen Dynamics. The agreement
between the responses of the nonlinear and reducee! is excellent (Figure 4). The
difference between the reduced and the nonlineafeim@sponse is less than 2.3% at
the end of the time span.

However, the transition time is quite long, as etpd when the objective was set. From
an initial guess of 6 hours, the optimum solutied to a transition time of about 24
hours. To determine the cause of this behaviostudy of the system’s time constant
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should be performed. This should be done befordementing the optimization, in
order to get a better initial guess, and reduceftiignization time.

N
&}

N
o

Full nonlinear model

w
@

e ——
=== Reduced model

w
o
L

N
o
L

Production rate / [kmol/hr]

N
o

10 15 20 25
Time / [hr]

o
&)

Figure 4. Comparisons between the responses d@itrend reduced model after the optimum
control profiles are implemented.

4. Conclusions

This paper proposes and demonstrates the advaoitageloiting the inherent structure
that exists in a chemical plant for developing et models to be used during the
dynamic optimization of chemical plants operatidhe recommended procedure is to
apply model reduction to individual units of theupl, and then to couple together these
reduced models. The procedure is flexible, allowdifferent reduction techniques to be
applied for different individual units, and the tsnto be chosen considering the future
use of the reduced model. The solution time isiBagmtly reduced, which makes the
model easier to be applied for the purpose of dudys Another advantage of the
procedure is the modularity of the reduced modéictvcan be very useful in the case
of future plant changes, or even for when the redumodel is used for a different
application. In these cases, instead of havinghi@in a new reduced model of the
whole plant, only the reduced model of the new wmitild be changed.
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