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Abstract 
The application of model reduction techniques in the context of dynamic optimization 
of chemical plants operation is investigated. The focus is on the derivation and use of 
reduced models for the design and implementation of optimal dynamic operation in 
large-scale chemical plants. The recommended procedure is to apply the model 
reduction to individual units or groups of units, followed by the coupling of these 
reduced models, to obtain the reduced model of the plant. The procedure is flexible and 
accurate and leads to a major reduction of the simulation time. 
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1. Introduction 
The strong competition in the industrial environment nowadays demands for 
economical operation of chemical plants. This goal can be achieved in two ways, which 
do not exclude each other. One approach is to continuously respond to the market 
conditions through dynamic operation. A second approach is to develop control systems 
that maintain the steady state or implement the optimal dynamic behaviour. For the first 
approach, the economical optimality is achieved through dynamic optimization. For the 
second approach, the development of the plantwide control structures to achieve stable 
operation is of paramount importance. 
However, both approaches presented above require dynamic models of the chemical 
plant. The quality of the model is crucial for achieving the objective: the model must 
represent the plant behaviour with good accuracy, but the complexity must be limited 
because both applications require repeated solution during limited time. Another 
requirement is that the model is easy to be maintained and adapted to future plant 
changes. 
The order-reduction of the process model could offer a solution. Several linear [1] and 
nonlinear techniques [2] have been developed and their application to different case 
studies reported. Although significant reduction of the number of equations is achieved, 
the benefit is often partial, because the structure of the problem is destroyed, the 
physical meaning of the model variables is lost and there is little or no decrease of the 
solution time [3]. 
In this contribution, the derivation of the optimal control profiles is realised by using a 
reduced model obtained through the model reduction with process knowledge approach. 
The procedure takes into account the inherent structure that exists in a chemical plant in 
the form of units or groups of units that are connected by material and energy streams. 
This decomposition mirrors the decentralization of the control problem. The 
recommended procedure is to apply model reduction to individual units, and then to 
couple together these reduced models. The technique will be applied to a case study: the 
iso-butane alkylation plant. 
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2. Approaches to dynamic optimization 
The objective of the dynamic optimization is to determine, for a dynamic system, a set 
of decision variable time profiles (pressure, temperature, flowrate, heat duty etc.) that 
optimise a given performance criterion, subject to specified constraints (safety, 
environmental and operating constraints). 
The dynamic optimization problem of interest in this contribution can be stated as 
follows: 

min ( ( ), ( ), ( ), , ) ( ( ), ( ), ( ), , )
( ), 0

f

f f f f
f

t
Obj x t u t y t t p obj x t u t y t t p dt

u t t
= ∫  (1) 

s.t.    0)),(),(),(),(( =
⋅

ptztutxtxf  (2) 

         ( ( ), ( ), ( ), ) 0g x t u t z t p =  (3) 

        min max( )x x t x≤ ≤  (4) 

        min max( )u u t u≤ ≤  (5) 

       min max( )z z t z≤ ≤  (6) 

       0(0)x x=  (7) 

In this formulation, ( )x t  are state (dependent) variables, ( )u t are control (independent) 

variables and ( )z t are algebraic variables, while p are time-independent parameters.  

The dynamic models of chemical processes are represented by differential-algebraic 
equations (DAEs). Equation (2) and (3) define such a system. Equations (4), (5) and (6) 
are the path constraints on the state variables, control variables and algebraic variables 
respectively, while equation (7) represents the initial condition of the state variables. 

Obj is a scalar objective function at final time, ft . 

The most common approach to DAE-based optimization problems is the transformation 
of the infinite-dimensional dynamic problem into a finite-dimensional nonlinear 
programming problem (NLP) [4]. Two main approaches have been developed in order 
to make this transformation.  
The first one is to decompose the dynamical system into the control and the state 
spaces. In the next step, only the control variables are discretized and remain as degrees 
of freedom for the NLP solver [5]. The method is called the sequential approach. The 
DAE system has to be solved at each NLP iteration. The disadvantages of the approach 
are: problems of handling path constraints on the state variables, since these variables 
are not included directly in the NLP solver [5]; the time needed to reach a solution can 
be very high in case the model of the dynamic system is too complex; difficulties may 
arise while handling unstable systems [4]. 
In the second approach, both the state and the control variables are discretized. In this 
way, a large-scale NLP problem is obtained, but the DAE system is solved only once, at 
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the optimal point. In this way, the disadvantages of the sequential approach are 
eliminated, but there is still the issue of handling the problem size [4]. 
In the recent years, a new approach has been developed for eliminating this 
disadvantage [5]. This approach is called the quasi-sequential approach and takes the 
advantages of both the sequential and the simultaneous approaches: since both the 
control and the state variables are discretized, the path constraints for the state variables 
can be handled; the DAE system is integrated only once, so the computation becomes 
more efficient. 

3. Model reduction for dynamic optimization 
As seen in the previous chapter, all the approaches used to solve the dynamic 
optimization problem integrate, at some point, the dynamical system of the chemical 
process. In order to obtain more efficiently the values of the optimum profile of the 
control variable, a suitable model of the system should be developed. That means that 
the complexity of the model should be limited, but, in the same time, the model should 
represent the plant behaviour with good accuracy. The best way to obtain such a model 
is by using the model reduction techniques. However, the use of a classical model 
reduction approach is not always able to lead to a solution [6]. And very often, the 
physical structure of the problem is destroyed. Thus, the procedure has to be performed 
taking into account the process knowledge (units, components, species etc.).  
In the following chapter, the application of the model reduction with process knowledge 
for the dynamic optimization will be presented. This will be done by means of a case 
study: the iso-butane alkylation plant. 
 

3.1. The iso-butane alkylation plant  
The alkylation of iso-butane is a widely used method for producing high-octane 
blending component for gasoline. For the purpose of this study, the following reactions 
capture the overall chemistry: 

4 8 4 10 8 18C H i C H i C H+ − → −  (8) 

4 8 8 18 12 26C H i C H C H+ − →  (9) 
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Figure 1. The iso-butane alkylation plant. 

The reactions are exothermic and occur in liquid phase. The secondary reaction (9) has 
large activation energy, therefore high selectivity is favoured by low temperatures. The 
cooling is achieved in an external heat-exchanger. The second reaction is suppressed by 
keeping the concentration of butene low. Therefore, a large excess of iso-butane is fed 
to the reactor. From the reactor effluent, the light impurities, reactants, products and 
heavy products are separated by distillation and removed or recycled.  
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The plantwide control structure (Figure 2) is the same as the one determined to have a 
stable behaviour in [6]: the flowrate of the fresh butene is specified, while the iso-
butane is introduced by inventory control. 
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Figure 2. The proposed plantwide control structure for the iso-butane alkylation plant. 

Local control is also present: the reactor is operated at constant volume and temperature, 
while for the distillation columns, the levels, pressure, and top and level compositions 
are controlled. 
The objective of the dynamic optimization problem should be stated before the model 
reduction is performed, in order to choose the right variables to be kept in the reduced 
model. The objective of the dynamic optimization problem will be stated as follows: 
Increase the plant production by 20% with minimal energy consumption in the 
distillation columns.  
It should be mentioned that this focus on energy may lead to a long transition period.  
 

3.2. Reduced model 
The full nonlinear model is developed using Aspen Dynamics. For obtaining the 
reduced model, the same procedure presented in [6] is used. However, in this case the 
reduced model will be developed using gProms. 
First of all, the plant flowsheet is split into units / group of units. The splitting it is done 
in units to which local control is applied: the reactor (plus the heat exchangers around 
it), the distillation columns, mixing vessels, pumps. Since the mixers and the pumps are 
considered instantaneous (no dynamics) they are not interesting for the model reduction. 
Further, the units are individually reduced.  
Since the reactor has a strong nonlinear behaviour, the model simplification is used. A 
dynamic model is written using gProms, consisting of five component balances, and 
considering constant temperature and physical properties.  
For the distillation columns, linear model-order reduction will be used. The linear 
model is obtained in Aspen Dynamics. Some modifications to the previous study have 
been done to the linear models, in order to have the reboiler duty and the reflux ratio as 
input or output variables of the linear models. This is needed to have access to those 
variables in the reduced model, for the purpose of the dynamic optimization. A balanced 
realization of the linear models is performed in Matlab. The obtained balanced models 
are then reduced. The reduced models of the distillation columns are further 
implemented in gProms. When all the reduced models of the individual units are 
available, these models are further connected in order to obtain the full reduced model 
of the alkylation plant. The outcome of the model reduction procedure is presented in 
Table 1, together with some performances of the reduced model. 
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Table 1. The model reduction of the iso-butane alkylation plant 

Unit Model reduction technique Full nonlinear model Reduced model 

CSTR Model simplification 15 states 5 states 

COL1 Model order-reduction 188 states 25 states 

COL2 Model order-reduction 194 states 29 states 

COL3 Model order-reduction 169 states 17 states 

Simulation time 150 seconds 2 seconds 

 

3.3. Dynamic optimization 
After the reduced model is obtained, the dynamic optimization problem (equations (1) – 
(7)) is implemented in gProms. The single shooting method is used. 
The objective function to be minimised is the sum of the reboiler duties in the 
distillation columns. Two control variables are considered: the flowrate of the fresh feed 

of butene ( 0AF ) and the flowrate of the first mixer’s outlet stream ( 1F ), which are also 

the variables on flow control in the plantwide control structure (Figure 2). 
After the 20% increase in the production is achieved, the optimizer is asked to ensure a 
new steady state is reached and the production is kept constant for a while. The two 
control variables are discretized into 25 time intervals. The size of the first 20 intervals 
is free, while for the last 5 it is fixed. 
A selectivity constraint is imposed, in order to maintain the formation of the secondary 
products at a low value. All the constraints are introduced as inequality type constraints. 
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Figure 3. The optimum control profiles for: a) the component A fresh feed flowrate; b) the recycle 
flowrate. 

The optimum profiles of the control variables (Figure 3) are obtained after several time-
consuming, trial-and-error iterations. The solution was obtained after a number of about 
150 manual iterations, not taking into account the iterations performed by the solver. In 
each manual iteration, the initial profile was modified by the user, while the solver is 
trying to optimize this profile. The advantage of having a reduced model at this point is 
obvious. 
Further, the optimum profiles were implemented into Aspen Dynamics. The agreement 
between the responses of the nonlinear and reduced model is excellent (Figure 4). The 
difference between the reduced and the nonlinear model response is less than 2.3% at 
the end of the time span. 
However, the transition time is quite long, as expected when the objective was set. From 
an initial guess of 6 hours, the optimum solution led to a transition time of about 24 
hours. To determine the cause of this behaviour, a study of the system’s time constant 
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should be performed. This should be done before implementing the optimization, in 
order to get a better initial guess, and reduce the optimization time.  
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Figure 4. Comparisons between the responses of the full and reduced model after the optimum 
control profiles are implemented. 

4. Conclusions 
This paper proposes and demonstrates the advantage of exploiting the inherent structure 
that exists in a chemical plant for developing reduced models to be used during the 
dynamic optimization of chemical plants operation. The recommended procedure is to 
apply model reduction to individual units of the plant, and then to couple together these 
reduced models. The procedure is flexible, allowing different reduction techniques to be 
applied for different individual units, and the units to be chosen considering the future 
use of the reduced model. The solution time is significantly reduced, which makes the 
model easier to be applied for the purpose of our study. Another advantage of the 
procedure is the modularity of the reduced model, which can be very useful in the case 
of future plant changes, or even for when the reduced model is used for a different 
application. In these cases, instead of having to obtain a new reduced model of the 
whole plant, only the reduced model of the new unit would be changed. 
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