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Abstract 
In the framework of real-time optimization, measurements are used to compensate for 
effects of uncertainty. The main approach uses measurements to update the parameters 
of a process model. In contrast, the constraint-adaptation scheme uses the measurements 
to bias the constraints in the optimization problem. In this paper, an algorithm 
combining constraint adaptation with a constraint controller is presented. The former 
detects shifts in the set of active constraints and passes the set points of the active 
constraints to the latter. In order to avoid constraint violation, the set points are moved 
gradually during the iterative process. Moreover, the constraint controller manipulates 
linear combinations of the original input variables. The approach is illustrated for a 
simple case study. 
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1. Introduction 
Throughout the petroleum and chemicals industry, the control and optimization of many 
large-scale systems is organized in a hierarchical structure. At the real-time optimization 
level (RTO), decisions are made on a time scale of hours to a few days by a so-called 
real-time optimizer that determines the optimal operating point under changing 
conditions. The RTO is typically a nonlinear program (NLP) minimizing cost or 
maximizing economic productivity subject to constraints derived from steady-state mass 
and energy balances and physical relationships. At a lower level, the process control 
system implements the RTO results, including product qualities, production rates and 
active constraints (Marlin and Hrymak, 1997). 
Because accurate mathematical models are unavailable for most industrial applications, 
RTO classically proceeds by a two-step approach, namely an identification step 
followed by an optimization step. Variants of this two-step approach such as ISOPE 
(Roberts and Williams, 1981; Brdys and Tatjewski, 2005) have also been proposed for 
improving the synergy between the identification and optimization steps.  
Parameter identification is complicated by several factors: (i) the complexity of the 
models and the nonconvexity of the parameter estimation problems, and (ii) the need for 
the model parameters to be identifiable from the available measurements. Moreover, in 
the presence of structural plant-model mismatch, parameter identification does not 
necessarily lead to model improvement. In order to avoid the task of identifying a model 
on-line, fixed-model methods have been proposed. The idea therein is to utilize both the 
available measurements and a (possibly inaccurate) steady-state model to drive the 
process towards a desirable operating point. In constraint-adaptation schemes (Forbes 
and Marlin, 1994; Chachuat et al., 2007), for instance, the measurements are used to 
correct the constraint functions in the RTO problem, whereas a process model is used to 
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estimate the gradients of the cost and constraint functions. This way, the iterates are 
guaranteed to reach a feasible, yet suboptimal, operating point upon convergence. 
Two types of transients can be distinguished in RTO systems: at the lower level, the 
dynamic response of the controlled plant between successive steady-state operating 
points generated by RTO; at the upper level, the transient produced by the iterates of the 
RTO algorithm. Most RTO algorithms do not ensure feasibility during these transient 
periods, thus resulting in conservative implementations with significant constraint 
backoffs and limited changes in operating point between successive RTO periods. 
Constraint violations during both types of transients can be avoided by controlling the 
active constraints that define optimal operation (Brdys and Tatjewski, 2005). The 
implementation of constraint control can significantly decrease the constraint backoffs 
required in the RTO optimization problem, resulting in increased cost. The set of active 
constraints might change due to process disturbances and changing operating 
conditions, thus resulting in different constraint-control schemes (Maarleveld and 
Rijnsdorp, 1970; Garcia and Morari, 1984).  
In this work, a constraint-adaptation scheme is combined with a constraint controller. 
Special emphasis is placed on selecting the set points and the manipulated variables 
used in the constraint controller at each RTO period. The effect of the constraint 
controller on the feasibility of intermediate operating points is studied, under the 
assumption of an ideal constraint controller. 
The paper is organized as follows. Section 2 formulates the optimization problem. The 
RTO scheme combining constraint adaptation and constraint control is presented in 
Section 3. The behavior of the proposed scheme, with and without the constraint 
controller, is illustrated for a simple quadratic programming (QP) problem in Section 4. 
Finally, Section 5 concludes the paper. 

2. Problem Formulation 
The optimization problem for the plant can be formulated as follows: 
 

  
min

u
!(u) := "(u, y(u))  (1) 

 
  
s.t. G(u) := g(u, y(u)) ! G
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, (2) 
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   u !!

n
u  denotes the vector of decision (or input) variables, and 
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vector of controlled (or output) variables; 
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y # !  is the scalar cost function 

to be minimized; and 
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g
,  is the set of operating 

constraints. Throughout the paper, the notation 
 
( . )  is used for the variables that are 

associated with the plant and 
 
(.)  for those of the process model.  

The steady-state mapping of the plant, 
  
y(u),  is assumed to be unknown, and only an 

approximate model 
  
F(u, y,! ) = 0  is available for it, where   ! "!

n
! is the set of model 

parameters. Assuming that the model outputs y  can be expressed explicitly as functions 
of u  and  ! ,  the cost function and the operating constraints predicted by the model can 
be written as 

  
!(u," ) := #(u, y(u," ))  and 

  
G(u,! ) := g(u, y(u,! )),  respectively. 

3. Real-Time Optimization Scheme 

3.1. Constraint Adaptation  
In the presence of uncertainty, the constraint values predicted by the model do not quite 
match those of the plant. The idea behind constraint adaptation is to modify the 
optimization problem by adding a correction term to the constraint functions. At each 
RTO iteration, a model-based optimization problem of the following form is solved: 
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where 
  
!

k
"!

n
g  denotes the vector of constraint correction factors. Under the 

assumption that measurements are available for every constrained quantity at the end of 
each RTO period, the correction factors can be updated recursively as: 
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k
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where    B !!
n

g
"n

g  is a diagonal gain matrix with diagonal elements in the interval (0,1] . 
An important property of the constraint-adaptation algorithm is that the iterates are 
guaranteed to reach a feasible, yet suboptimal, operating point upon convergence 
(Forbes and Marlin, 1994). However, the constraints can be violated during the 
iterations, which calls for using constraint backoffs and limiting operating point changes 
between successive RTO periods. 
Constraint adaptation (3-4) represents the “classical” constraint-adaptation scheme 
(Forbes and Marlin, 1994; Chachuat et al., 2007). In this paper, a novel way of adapting 
the constraints is proposed: 
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where the correction term 
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k"1
) " G(u

k"1
,# )  stands for the difference between 

the measured and predicted values at the previous RTO period. The maximum values 
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for the constraints are calculated as: 
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For the combination with constraint control, constraint adaptation (6-7) is preferred 
because it gives the ability to vary the set points 

   
G

max,k
 passed to the constraint 

controller. Upon convergence of this algorithm, the set points reach the original 
constraint bounds 

  
G

max
. Let 
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0

!  denote the optimal solution for the process model with 

 
! = !

0
 in (3). It can be shown that the constraint-adaptation schemes (3-4) and (6-7) 

produce the same iterates when initialized with 
 
!

0
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u

0

!
,  respectively, and the same 

diagonal gain matrix B is used, provided the set of active constraints does not change. 
At each RTO period, a set of optimal inputs, 

  
u

k

! , and corresponding Lagrange 
multipliers, 

 
!

k

" , are obtained from the numerical solution of (5-6). Let 
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the vector of active constraints at 
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! . It is assumed that the Jacobian matrix of the 
active constraints, 
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regularity condition. It follows that the input space can be split into the 
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3.2. Combination with Constraint Control 
At the constraint-control level, the variables are considered as time-dependent signals. 
In this work, the constraint controller is designed so as to track the iteratively-updated 
active constraints by varying the process inputs along the constraint-seeking directions. 
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More precisely, the manipulated variables (MVs) in the constraint controller correspond 
to the corrections 

    
!u

k

c (t) "!
n

k

a

 along the directions 
  
V

k

c , from the model optimum 
  
u

k

! . 
Observe that the MVs may change from RTO period to RTO period, e.g. when the 
active set of (5-6) changes. At each time instant, the inputs 

   
u

k
(t)  are then reconstructed 

from the values of 
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The set points in the constraint controller correspond to the active constraints, 
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k
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, determined at the RTO level. Finally, the controlled variables (CVs) are 
the active constraints 
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At the initial time 
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 of the k-th RTO period, the constraint controller is started from 
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#( ) . At the terminal time 
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controller yields a new steady-state operation, which corresponds to the set points 
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a . The corresponding steady-state inputs 
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 are obtained from (9) as 
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Figure 1. Scheme combining constraint adaptation and constraint control. 

The overall optimization and control scheme is illustrated in Fig. 1, and the procedure 
can be summarized as follows: 

1. Set k = 0. Initialize B. Start from a feasible (conservative) operating point 
  
u

0
 

(without the constraint controller). 
2. At steady state, measure ( )

k
G u  and compute 

max, 1k+
G  from (7). Set   k := k +1 . 

3. Calculate the solution 
k

!
u  of (5-6).  

4. Determine the constraint-seeking directions c
V
k

 from SVD of the Jacobian 
matrix 

   
G

u,k

a of active constraints at 
k

!
u . 

5. Formulate a square constraint-control problem where the MVs are the values 
of 

   
!u

k

c (t) , the CVs are the active constraints 
   
G

k

a (t) , and the set points are the 
values 

   
G

max,k

a  of the active constraints identified in Step 3.  
6. Apply the constraint controller to the plant and get the inputs 

  
u

k
 

corresponding to the new steady-state operation. Go to Step 2. 
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3.3. Implementation Aspects 
The approach assumes that all the constrained variables can be measured or estimated 
on-line at a sampling period much smaller than the time constant of the controlled plant. 
Notice that the decision variables  u  in the RTO problem may very well be set points of 
feedback controllers acting directly on the plant manipulated variables. In this case, the 
constraint controller can be viewed as a primary controller in a cascade control 
configuration that corrects the set points produced at the RTO level. 
The constraint-control problem is a multivariable square control problem, and various 
controllers can be used, such as a discrete integral controller or a model predictive 
controller. 
In order to avoid overshoots, the set-point corrections can be implemented by ramps 
rather than steps. Also, small overshoots can usually be accommodated during the first 
few iterations, i.e. when the set points 

   
G

max,k

a are conservative with respect to the actual 
bounds 

  
G

max
. 

4. Illustrative Example 
Consider the following QP problem: 

 
   
min !(u," ) := (u

1
#1)2

+ (u
2
#1)2  (10) 
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1
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1
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2
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with two decision variables 
   
u = [u

1
u

2
]

T
,  four model parameters 

 
! = [!

1
,...,!

4
]

T
,  and 

two uncertain constraints 
  
G

1
 and 

  
G

2
. The parameter values for the model and the 

simulated reality are reported in Table 1. Note that the operating point determined from 
the model, without constraint adaptation, leads to constraint violation. 

Table 1. Values of the parameters !  for the model and the simulated reality. 

 
 
!

1
 

 
!

2
 

 
!

3
 

 
!

4
 

Reality 0.4 0.8 -1.8 1.9 
Model 0.9 0.4 -2.0 1.4 

 
In this simple QP problem, an ideal constraint controller is assumed, i.e. the controller 
determines 

   
!u

k

c (t
k
)  such that 

    
G

a
U u

k

! ,V
k

c ,"u
k

c (t
k
)( )#

$
%
& = G

max,k

a . The objective here is to 
illustrate the effect of constraint control on the feasibility of the steady-state 
intermediates.  
Both constraints are active at the optimum either for the reality or for the model. The 
constraint-adaptation algorithm is applied with and without constraint control, starting 
from T

0 [0 1.4]=u  and with a diagonal gain matrix 
  
B = b I

2!2
 with 

  
b !(0,1] . The 

results obtained with   b = 0.7  are shown in Fig. 2. It can be seen that, without constraint 
control, the iterates converge by following an infeasible path (left plot). In fact, the 
iterates can be shown to follow an infeasible path for any value of 

  
b !(0,1] ; the 

constraint violation is reduced by decreasing the value of b, but this is at the expense of 
a slower convergence. With constraint control, on the other hand, the iterates converge 
without violating the constraints (right plot), irrespectively of the value of b. Both 
constraints are found to be active at the solution point of the optimization problem (5-6) 
for all iterations. Since the number of active constraints is equal to the number of 
decision variables, the constraint-seeking directions span the whole input space here.  
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Figure 2. Illustration of the proposed algorithm for Problem (10-11). Left plot: Without constraint 
control; Right plot: With constraint control; Thick solid lines: constraint bounds for the simulated 
reality; Thick dash-dotted lines: constraint bounds predicted by the model without adaptation; 
Dotted lines: contours of the cost function; Light solid lines: iterates; Point R: optimum for the 
simulated reality; Point M: optimum for the model without adaptation. 

5. Conclusions 
An optimization scheme combining constraint adaptation with constraint control has 
been proposed. This scheme presents two important features: (i) the constraint controller 
tracks the active constraint determined at the RTO level by adapting the inputs in the 
subspace of constraint-seeking directions, and (ii) the set points for the active 
constraints in the constraint controller are updated at each iteration and reach the actual 
constraint bounds upon convergence.  
In future work, this combined scheme will be compared to other existing approaches 
(e.g. Ying and Joseph, 1999). The combination of more involved RTO schemes with 
constraint control (e.g. Gao and Engell, 2005) will also be considered. 
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