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Abstract 

This paper presents a discrete-event simulation environment that models the underlying 

structure of a pharmaceutical enterprise portfolio. An object-oriented model structure 

previously developed for batch plant scheduling and design is extended to embed the 

case of product management, which is particularly adequate for re-use of both structure 

and logic. By wrapping such a simulation with advanced optimization approaches, such 

as Genetic Algorithms, it becomes possible to evaluate a large set of scenarios for the 

pharmaceutical enterprise, with a holistic fashion that avoids local optima that can be 

detrimental to the enterprise. 
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1. Introduction 

A fundamental challenge in managing a pharmaceutical or biotechnology company is 

identifying the optimal allocation of finite resources across the infinite constellation of 

available investment opportunities. In that context, the optimal management of the new 

product pipeline has emerged at the forefront of all strategic planning initiatives of a 

company. 

This issue is traditionally identified as a complex one since it integrates various areas 

such as product development, manufacturing, accounting and marketing. The 

complexity of the problem is mainly attributed to the great variety of parameters and 

decision-making levels involved. A strategic investment plan should simultaneously 

address and evaluate in a proper manner the following four main issues: product 

management, clinical trials uncertainty, capacity management and trading structure. It is 

also generally viewed as a multistage stochastic portfolio optimization problem. The 

main challenge is to configure a product portfolio in order to obtain the highest possible 

profit, including any capacity investments, in a rapid and reliable way. These decisions 

have to be taken in the face of considerable uncertainty as demands, sales prices and 

outcomes of clinical tests that may not turn out as expected. 

This kind of problem has recently received attention from the process systems 

engineering community utilizing previous works from the process planning and 

scheduling area. Schmidt and Grossmann (1996) proposed various MILP optimization 

models for the scheduling of testing tasks with no resource constraints with a 

discretization scheme in order to induce linearity in the cost of testing. Jain and 

Grossmann (1999) extended these models to account for resource constraints. 
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Subramanian et al. (2003) proposed a simulation-optimization framework that takes into 

account uncertainty in duration, cost and resource requirements and extended this model 

to account for risk. Maravelias and Grossmann (2001) proposed an MILP model that 

integrates the scheduling of tests with the design and production planning decisions. A 

literature review of optimization approaches in the supply chain of pharmaceutical 

industries can be found in Shah (2003). A recent paper was presented by Blau et al. 

(2004) with a monoobjective Genetic Algorithm to optimize product sequence evaluated 

by a commercial discrete-event simulator.  

This paper lies in this perspective : the underlying idea is to use a multiobjective fuzzy 

framework as already initiated by (Aguilar-Lasserre et al., 2007) to model both the 

conflicting nature of the criteria (i.e. risk minimization and profitability maximization) 

and the imprecise nature of some parameters (demand, operating times …). In that 

context, this work aims at the development of an architecture that combines an 

optimization procedure based on a multiobjective genetic algorithm and a discrete-event 

system (DES) simulation to assess the uncertainty present in the pipeline and to help 

decision-making. The presentation is mainly focused on the development of the 

simulator initially developed for scheduling, planning and design purposes.  

2. Problem formulation 

Within the scope of Research and Development Pipeline management problem, several 

new-product-development (NPD) projects compete for a limited pool of various 

resource types. Each project product usually involves a series of testing tasks prior to 

product commercialization. If the project fails any of these tasks, then all the remaining 

work on that product is stopped and the investment in the previous testing tasks is 

wasted. In its most general form, the R&D Pipeline management problem can be 

formulated as follows:  given a set of products that are potential candidates and a set of 

resources to complete the testing tasks. Each potential product is required to pass a 

series of tests. Each test has a given duration, cost and probability of success that is 

assumed to be known a priori. Resources can also be installed at a known cost. 

Resources are discrete in nature (e.g. laboratories, scientists) and each resource unit can 

handle only one task at a time. Tests are assumed to be non-preemptive. A flow diagram 

of the activities involved in the development of a new pharmaceutical product is 

proposed in Fig. 1. Although some differences may exist referring to various industrial 

practices, we consider it as generic enough to embed various formulations. 

The idea is to model the various paths and the precedence relations between these 

activities by discrete-event simulation principles used in previous works for batch plant 

design.  The problem of evaluating and selecting which new products to develop and 

then of sequencing or of scheduling them is not a trivial task due to dependencies 

between products both in the market place and in the development process itself. 

3. Discrete-event Simulation 

3.1. Process Modelling. 

In a DES, a process is described as it evolves with time and changes take place only a 

finite number of times, i.e. event occurrence date. The DES was developed using C++ 

object-oriented language, keeping the approach proposed by (Bérard et al., 1999) (Fig. 

2). The power of object oriented techniques lie in the ability to produce “modular” code 

(known as classes) that can be easily modified and reused. The four layer framework 

proposed by (Bérard et al., 1999) {engine, event, object, supervisor} is used again in 
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this work. At the lowest level, the common engine is found. Initially, the events in the 

next level are generic events common to all batch plant simulations: in this case, the 

definition must be adapted since we have to consider the whole life cycle of a project 

related to a product. In the same way, the objects taken into account present some 

similarities but differ in their appreciation: for instance, in batch plant scheduling 

problems (BPS), material resources are constituted by equipment whereas in NPD 

problems, resources may be viewed more globally. In fact, the main differences at this 

step occur from a terminology point of view and this can be easily transposed in the 

NPD formulation (see Table 1). 
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Fig. 1. Flow diagram of the activities involved in the development of a new pharmaceutical 

product (FHDP: First Human Dose Preparation, FSA, First Submission for Approval) 

 

Table 1. Terminology in BPS and NPD project problems 

Batch plant scheduling 

(BPS) 

NPD project 

Product #i Project related to a product #i (PRP #i) 

Equipment item #j Resource of a given step #j 

Recipe #k Succession of activities #k (also called recipe) 

Unit operation of a recipe #l Activity #l 

 

Following the classical terminology used in object-oriented approaches, the main so-

called objects of the DES are described.  

The core of the simulator is the Engine, which has two functions: the former is to order 

the Events in its Calendar by their occurrence date whereas the latter is to activate them 

if the necessary resources are available; if not, it reports the Event to a next Date. As 

previously, an Event represents a change of the real system at a given time. The class 

Event is a basis class from which the different Events must be defined. An Event is 

characterized by its occurrence date, its action over the system and a type that enables 

to give priorities when two or more Events have the same occurrence date. As a general 

rule, Events which release resources have priority over the others, and when Events 

have the same type, the classical FIFO rule (First In First Out) is applied. This will be 

useful when different projects compete for the same resources. The Event Class 

previously developed was generic enough to embed the NPD formulation. 
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The project for Product # i is a basis class which has the name of the product and its 

recipe as member data. Each product is dedicated to a disease type. Success 

probabilities occurring at Phases 1, 2, and 3 (α1, α2, α3), capital cost data (Min, Max) 

and the level of mature sales (Min, Max) must also be defined. A degree of difficulty 

(DoD) for computation of capital cost and mature sales is assigned to each product, 

reflecting the difficulty to carry out the project. A DoD of 1 is assigned to the Min value 

(respectively 10 for the Max value). The resulting value, either cost or sales, is then 

computed by linear interpolation from DoD. 

The Recipe contains the information about the treatment sequence describing the life 

cycle of a project. In NPD problems, all the projects follow the same Recipe: only the 

duration or cost may differ from a project to another one. This is quite similar to the 

multiproduct case in BPS. Each Activity is described by its name, duration, cost and 

total available resources. A Basic Activity implies that a project step follows a linear 

path (Simple Input, Simple Output) with a given operating time. Two events are used by 

the Activity Class, respectively Load and Release classes.  

 

 

 

 

 

 

 

Fig. 2. Some basic classes involved in the DES model. 

Additional classes are introduced to model the process described in Fig. 1 for node 

management. For instance, the Copy class takes a project phase of a product as input 

and distributes the following activities to 2 resources with an operating time equal to 0. 

The failure-success class is also taken into account to model both the premature stop of 

the project and its following steps in case of success.  Let also note that a so-called 

buffer class is also defined to model that an activity initiated in parallel with another one 

is waiting for it before passing through the following step. The resulting process 

structure used in the model is then illustrated in Fig. 3. 

Four frequently occurring types of dependencies are also considered in the model (see 

(Blau et al., 2004) with the same principles: (1) resource dependencies (2) 

manufacturing cost dependencies; (3) financial return dependencies; and (4) technical 

success dependencies. 
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Fig. 3. Network of activities for the DES model. 
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3.2. Simulation principles  

 

To take into account the stochastic nature of the problem, the simulation is repeated a 

large number of times selecting random sampling values from the probability 

distributions and gathering the results, it is possible to determine probability 

distributions for various economic and risk indicators. The implementation of the 

simulation thus requires a pre-processing task to generate random numbers for success 

probabilities. The computation of the Net Present Value (NPV) is cumulated along the 

evolution of a project for a given product. The so-called reward/risk ratio, obtained by 

dividing the mean reward by the mean loss, to measure the attractiveness of new 

product candidates is also evaluated for each project. The mean reward (respectively 

risk) is calculated from the mean values of positive (respectively negative) NPV values. 

In that case, the simulation was run 10 000 times. 

3.3. Typical results 

 

The detailed presentation of a simulation example will be too exhaustive. Only typical 

results are analysed. The data set is taken from (Blau et al. 2004) and (Blau, 2000). The 

problem case study considers nine new drug candidates (D1 to D9) targeted to treat 

three different diseases. The example inspired from real data is designed to take into 

account interdependencies between the products. Yet, a direct simple application of the 

DES model is first to examine the behaviour of each drug candidate individually.  

For this purpose, the bubble chart in Fig. 4 provides a graphical view of the project 

portfolio risk-reward balance. It is used to assure balance in the portfolio of projects-

neither too risky or conservative and appropriate levels of reward for the risk involved. 

If products with the higher ratio and the higher success probability (upper-right 

quadrant, here Product 3) constitute the best options, the size of the bubble proportional 

to the expected capital cost can be another argument.   

4. Genetic Algorithm 

The second phase of the methodology is to embed the DES in an outer optimization 

loop. A multiobjective Genetic Algorithm based on the principles developed by (Deb et 

al., 2002) (Elitist Non-Dominated Sorting Genetic Algorithm, NSGA II) is used.  

The focus for the GA is to find a sequence that maximizes the NPV and minimizes the 

probability of failure taking into account a sequence. A typical Pareto front is presented 

in Fig. 5 with an interesting compromise sequence. 

 

5. Conclusions and perspectives 

 

This paper has proposed a general framework for the determination of an optimal 

portfolio for the development of new pharmaceutical products. The approach is based 

on the combination of a discrete-event simulation model with a multiobjective genetic 

algorithm procedure. The presentation was mainly focused on the extension of an 

object-oriented DES model previously developed for scheduling and design of batch 

processes. The method provides a uniform treatment of both project uncertainties and 

dependencies, which are inherent to this industry. The use of the mutiobjective AG is 

particularly adequate to consider the highly combinatorial portfolio management 

problems facing modern pharmaceutical businesses. 
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Further works are now devoted to model with more realism the imprecise nature of 

some parameters, for instance, demand or cost, by fuzzy concepts. 
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Fig. 4. Results for Reward/Loss ratio  for nine 

products.  

 

 

 

 

 

Fig. 5. Typical Pareto Front 
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