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Abstract 

Challenges in real-time process optimization mainly arise from the inability to build and 

adapt accurate models for complex physico-chemical processes. This paper surveys 

different ways of using measurements to compensate for model uncertainty in the 

context of process optimization. A distinction is made between model-adaptation 

methods that use the measurements to update the parameters of the process model 

before repeating the optimization, modifier-adaptation methods that adapt constraint 

and gradient modifiers, and direct-input-adaptation methods that convert the 

optimization problem into a feedback control problem. This paper argues in favor of 

modifier-adaptation methods, since it uses a model parameterization, measurements, 

and an update criterion that are tailored to the tracking of the necessary conditions of 

optimality. 
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1. Introduction 

Optimization of process performance has received attention recently because, in the face 

of growing competition, it represents the natural choice for reducing production costs, 

improving product quality, and meeting safety requirements and environmental 

regulations. Process optimization is typically based on a process model, which is used 

by a numerical procedure for computing the optimal solution. In practical situations, 

however, an accurate process model can rarely be found with affordable effort.
 

Uncertainty results primarily from trying to fit a model of limited complexity to a 

complex process. The model-fitting task is further complicated by the fact that process 

data are usually noisy and signals do not carry sufficient excitation. Therefore, 

optimization using an inaccurate model might result in suboptimal operation or, worse, 

infeasible operation when constraints are present [8].  

Two main classes of optimization methods are available for handling uncertainty. The 

essential difference relates to whether or not measurements are used in the calculation 

of the optimal strategy. In the absence of measurements, a robust optimization approach 

is typically used, whereby conservatism is introduced to guarantee feasibility for the 

entire range of expected variations [18]. When measurements are available, adaptive 

optimization can help adjust to process changes and disturbances, thereby reducing 

conservatism [9]. It is interesting to note that the above classification is similar to that 

found in control problems with the robust and adaptive techniques. 

An optimal solution has to be feasible and, of course, optimal. In practice, feasibility is 

often of greater importance than optimality. In the presence of model uncertainty, 
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feasibility is usually enforced by the introduction of backoffs from the constraints. The 

availability of measurements helps reduce these backoffs and thus improve performance 

[6].
 
Generally, it is easier to measure or infer constrained quantities (e.g. temperature or 

pressure) than estimate gradients of the cost and constrained quantities. These elements 

clearly set a priority of actions in the framework of adaptive optimization. 

This paper discusses three major approaches in adaptive optimization that differ in the 

way adaptation is performed, namely (i) model-adaptation methods, where the 

measurements are used to refine the process model, and the updated model is used 

subsequently for optimization [7,17];
 
(ii) modifier-adaptation methods, where modifier 

terms are added to the cost and constraints of the optimization problem, and 

measurements are used to update these terms [8,10,20]; and (iii) direct-input-adaptation 

methods, where the inputs are adjusted by feedback controllers, hence not requiring 

optimization but a considerable amount of prior information regarding control design 

[9,21,25]. 

These approaches are surveyed and compared in the first part of the paper. A critical 

discussion follows, which argues in favor of modifier-adaptation methods that share 

many advantages of the other methods. 

An important issue not addressed herein concerns the availability of reliable 

measurements. Also, note that the intended purpose of the models presented here is 

optimization and not prediction of the system behavior. 

2. Static Optimization Problems 

For continuous processes operating at steady state, optimization typically consists in 
determining the operating point that minimize or maximize some performance of the 
process (such as minimization of operating cost or maximization of production rate), 
while satisfying a number of constraints (such as bounds on process variables or product 
specifications). In mathematical terms, this optimization problem can be stated as 
follows: 

 
minimize: p ( ) := p , y p( )

subject to: G p ( ) := g p , y p( ) 0
 (1) 

where 
 

n  and 
 
y p

ny  stand for the process input (set points) and output vectors, 

respectively; 
 

p :
n ny  is the plant performance index; and 

 
g p :

n ny ng  is the vector of constraints imposed on the input and output 

variables. 

In contrast to continuous processes, the optimization of batch and semi-batch processes 

consists in determining time-varying control profiles, u(t), t0 t tf . This typically 

involves solving a dynamic optimization problem, possibly with path and terminal 

constraints. A practical way of solving such problems is by parameterizing the control 

profiles using a finite number of parameters , e.g., a polynomial approximation of 

u(t)  on finite elements. Although the process is dynamic in nature, a static map can be 

used to describe the relationship between the process inputs  and the outcome of the 

batch y(tf ) . Hence, the problem can be regarded as a finite-dimensional static 

optimization problem similar to (1), and the optimization approaches discussed in the 

following sections can also be used in the framework of run-to-run optimization of 
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batch and semi-batch processes (see, e.g., [9]).  

In practice, the mapping relating the process inputs and outputs is typically unknown, 

and only an approximate model is available, 

 y = f ,( )  (2) 

with 
 
y ny  representing the model outputs, and 

 

n  the model parameters, and 

 f :
n n ny  the input-output mapping. Accordingly, an approximate solution of 

problem (1) is obtained by solving the following model-based optimization problem: 

  

minimize: ,( ) := , y,( )

subject to: y = f ,( )

G ,( ) := g , y,( ) 0

 (3) 

Provided that the objective and constraint functions in (1) and (3) are continuous and 

the feasible domains of these problems are nonempty and bounded, optimal solution 

points p  and  are guaranteed to exist for (1) and (3), respectively [2]. Note that 

such optimal points may not be unique due to nonconvexity. The KKT conditions – also 

called necessary conditions of optimality (NCO) – must hold at an optimal solution 

point provided that the active constraints satisfy a regularity condition at that point [2]. 

For Problem (3), the KKT conditions read: 

 

G ,( ) 0, 0 ,

,( ) +
G

,( ) = 0,

G ,( ) = 0

 (4) 

where 
 

ng  is the vector of Lagrange multipliers.  The KKT conditions involve the 

quantities G,  and 
G

, which are denoted collectively by  subsequently. 

3. A Classification of Real-time Optimization Schemes 

Real-time optimization (RTO) schemes improve process performance by adjusting 

selected optimization variables using available measurements. The goal of this closed-

loop adaptation is to drive the operating point towards the true plant optimum in spite of 

inevitable structural and parameter model errors. RTO methods can be classified in 

different ways. This section presents one such classification based on the parameters 

that can be adapted, as illustrated in Fig. 1; note that repeated numerical optimization is 

used in the methods of columns 1 and 2, but not in those of column 3.  

3.1. Model-Adaptation Methods  

The standard way of devising a RTO scheme is the so-called two-step approach [1], 

also referred to as repeated identification and optimization in the literature. In the first 

step, the values of (a subset of) the adjustable model parameters  are estimated by 

using the available process measurements. This is typically done by minimizing the lack 

of closure in the steady-state model equations (2), such as the weighted sum of squared 

errors between measured outputs y p  and predicted outputs y  [17]. 
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Figure 1: Optimization scenarios that use measurements to adapt for feasibility and optimality. 

 

A key, yet difficult, decision in the model-update step is to select the parameters to be 

updated. These parameters should be identifiable, represent actual changes in the 

process, and contribute to approach the process optimum; also, model adequacy proves 

to be a useful criterion to select candidate parameters for adaptation [8]. Clearly, the 

smaller the subset of parameters, the better the confidence in the parameter estimates, 

and the lower the required excitation. But too low a number of adjustable parameters 

can lead to completely erroneous models, and thereby to a false optimum. 

In the second step, the updated model is used to determine a new operating point, by 

solving an optimization problem similar to (3). Model-adaptation methods can be 

written generically using the following two equations (see Fig. 2):  

 
k
=

k 1
+ upd y p (

k 1 ) y( k 1
,

k 1 )( ),  (5) 

 
k
= opt

k( )   (6) 

where upd  is the map describing the model-update step, such that upd (0) = 0 ; opt , 

the map describing the optimization step. Note that the handles for correction are a 

subset of the adjustable model parameters . The use of auxiliary measurements ( y p ) 

presents the advantage that any available measurement can be used.  

 

Figure 2. Model-adaptation method: Two-step approach 
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It is well known that the interaction between the model-update and reoptimization steps 

must be considered carefully for the two-step approach to achieve optimal performance. 

In the absence of plant-model mismatch and when the parameters are structurally and 

practically identifiable, convergence to the plant optimum may be achieved in one 

iteration. However, in the presence of plant-model mismatch, whether the scheme 

converges, or to which operating point the scheme converges, becomes anybody's 

guess. This is due to the fact that the update objective might be unrelated to the cost or 

constraints in the optimization problem, and minimizing the mean-square error in y  

may not help in our quest for feasibility and optimality. To alleviate this difficulty, 

Srinivasan and Bonvin [23] presented an approach where the criterion in the update 

problem is modified to account for the subsequent optimization objective.  

Convergence under plant-model mismatch has been addressed by several authors [3,8]; 

it has been shown that an optimal operating point is reached if model adaptation leads to 

a matching of the KKT conditions for the model and the plant. 

Theorem 1. Let the parameter adaptation (5) be such that the plant measurements p  

match those predicted by the model, . Then, upon convergence, the model-adaptation 

scheme (5-6) reaches an (local) optimum operating point of the plant. 

A proof of this result is readily obtained from the assumption that the KKT conditions 

predicted by the model equal those achieved by the plant. With such a matching, the 

converged solution corresponds to a (local) plant optimum. 

Although Theorem 1 is straightforward, the KKT-matching assumption is difficult to 

meet in practice. It requires an “adequate” parameterization so that all the components 

of the KKT conditions can match, as well as “adequate” measurements and an 

“adequate” update criterion. 

3.2. Modifier-Adaptation Methods  

In order to overcome the modeling deficiencies and to handle plant-model mismatch, 

several variants of the two-step approach have been presented in the literature. 

Generically, they consist in modifying for the cost and constraints of the optimization 

problem for the KKT conditions of the model and the plant to match. The optimization 

problem with modifiers can be written as follows: 

 

 

minimize:

subject to:

,( ) := ,( ) + T

G ,( ) := G ,( ) + G + G
T k( ) 0

 (7) 

where 
 G

ng  is the constraint bias, 
 

n
 the cost-gradient modifier, and 

 G
n ng  the constraint-gradient modifier; these modifiers are denoted collectively 

by  subsequently. 

• The constraint bias G  represents the difference between the measured and predicted 

constraints, G := G p ( ) G( , ) , evaluated at the previous operating point k . 

Adapting only G  leads to the so-called constraint-adaptation scheme [6,8]. Such a 

scheme is rather straightforward and corresponds to common industrial practice [17]. 

• The cost-gradient modifier  represents the difference between the estimated and 

predicted values of the cost gradient, T := p , evaluated at the previous 
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operating point k . The pertinent idea of adding a gradient modifier to the cost 

function of the optimization problem dates back to the work of Roberts [19] in the 

late 1970s. Note that it was originally proposed in the framework of two-step 

methods to better integrate the model update and optimization subproblems and has 

led to the so-called ISOPE approach [4]. 

• The constraint-gradient modifier G , finally, represents the difference between the 

estimated and predicted values of the constraint gradients, 
G
T :=

G p G , 

evaluated at the previous operating point k . The idea of adding such a first-order 

modifier term to the process-dependent constraints, in addition to the constraint bias 

G , was proposed recently by Gao and Engell [12]. This modification allows 

matching, not only the values of the constraints, but also their gradients. 

Overall, the update laws in modifier-adaptation methods can be written as (see Fig. 3): 

 
 

k
=

k 1
+ upd p (

k 1 ) ( k 1, )( )  (8) 

 
k
= opt

k( )   (9) 

where 

 

:= G, ,
G

, with 
 
,G  as defined in Problem (7); and the modifier 

update map, upd , is such that upd (0) = 0 . The handles for correction are the modifier 

parameters  instead of  used in the context of model-adaptation schemes. Also, the 

measurements p  required to make the adaptation are directly related to the KKT 

conditions; auxiliary measurements are not used in this framework. Observe the one-to-

one correspondence between the number of measurements/estimates and the number of 

adjustable parameters. In particular, identifiability is automatically satisfied, and so are 

the KKT-matching conditions.  

 

Figure 3. Modifier-adaptation method: Matching the KKT conditions 

Modifier-adaptation methods possess nice theoretical properties, as summarized by the 

following theorem. 

Theorem 2. Let the cost and constraint functions be parameterized as in Problem (7). 

Also, let the information on the values of p  be available and used to adapt the 

modifiers . Then, upon convergence, the modifier-adaptation scheme (8-9) reaches 

an (local) optimum operating point of the plant. 
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A proof of this result is easily obtained by noting that, upon convergence, the modified 

constraints  G  in (7) match the plant constraints G p , and the gradients of the modified 

cost and constraint functions match those of the plant (see also [10]). It follows that the 

active set is correctly determined and the converged solution satisfies the KKT 

conditions. 

Hence, there is a close link between the model- and modifier-adaptation methods in that 

the parameterization and the update procedure are both intended to match the KKT 

conditions. Essentially, modifier-adaptation schemes use a model-predictive control 

with a one-step prediction horizon. Such a short horizon is justified because the system 

is static. However, since the updated modifiers are valid only locally, modifier-

adaptation schemes require some amount of filtering/regularization (either in the 

modifiers or in the inputs) to avoid too aggressive corrections that may destabilize the 

system. 

3.3. Direct-Input-Adaptation Methods  

This last class of methods provides a way of avoiding the repeated optimization of a 

process model by transforming it into a feedback control problem that directly 

manipulates the input variables. This is motivated by the fact that practitioners like to 

use feedback control of selected variables as a way to counteract plant-model mismatch 

and plant disturbances, due to its simplicity and reliability compared to on-line 

optimization. The challenge is to find functions of the measured variables which, when 

held constant by adjusting the input variables, enforce optimal plant performance 

[19,21]. Said differently, the goal of the control structure is to achieve a similar steady-

state performance as would be realized by an (fictitious) on-line optimizing controller. 

In the presence of uncertainty, the inputs determined from off-line solution of problem 

(3) for nominal parameter values satisfy the NCO (4) but typically violate the NCO 

related to the plant itself. Hence, a rather natural idea is to correct the input variables  

so as to enforce the NCO for the plant [1,9,14]; in other words, the controlled variables 

are chosen as the NCO terms, with the corresponding set points equal to zero. 

Tracking of the NCO (4) consists of three steps: (i) determining the active set (positivity 

condition on Lagrange multipliers), (ii) following the active constraints, and (iii) 

pushing the sensitivity to zero. Determining the active set requires a switching strategy, 

whereby a constraint is included in the active set when it is attained, and deactivated 

when its Lagrange multiplier goes negative [29]. This switching logic renders the 

scheme more complex, and in the interest of simplicity, it may be assumed that the 

active constraints do not change. Note that such an assumption is always verified in the 

neighborhood of an optimal solution and is observed in many practical situations. 

Once the active set is known, the inputs are split into : (i) constraints-seeking directions 

that are used to track the active constraints, and (ii) sensitivity-seeking directions that 

are adapted to force the reduced gradients to zero. The active constraints G p
a

 and the 

reduced cost gradient r
p :=

p I P+P , with P :=
G p
a

, need to be measured. 

Since, in general, the constraint terms are easily measured, or can be reliably estimated, 

adjusting the inputs in the constraint-seeking directions to track the active constraints is 

rather straightforward [4,25,27]. Adjusting the sensitivity-seeking directions is more 

involved, mainly due to the difficulty in the measurement of the gradient terms. 

François et al. [9] proposed a two-time-scale adaptation strategy, wherein adaptation in 

the sensitivity-seeking directions takes place at a much slower rate than in the 

constraint-seeking directions.  
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Direct-input-adaptation methods obey the following equations (see Fig. 4): 

 
k
=

k 1
+ con G p

a ( k 1 ), r
p (

k 1 )( )  (10) 

 G p
a ( k ), r

p (
k )( ) = swi p (

k )( )  (11) 

where con  is the map describing the controller, such that con (0,0) = 0 ; swi , the map 

describing the switching logic for determination of the active set. The handles for 

correction are the process inputs , i.e., no specific parameterization is required here. 

Both the active constraints and the reduced cost gradient are forced to zero, e.g., with a 

discrete integral-type controller.  

 

Figure 4. Direct-input-adaptation method: Tracking the NCO using control 

Direct-input-adaptation methods also possess nice theoretical properties, as summarized 

by the following theorem. 

Theorem 3. Let the information on the values of p  be available and used to adapt the 

inputs and the active set given by (10-11). Then, upon convergence, the direct-input-

adaptation scheme (10-11) reaches an (local) optimum operating point of the plant. 

Note that the active process constraints and reduced gradients are both zero upon 

convergence. Moreover, since the positivity of the Lagrange multipliers is guaranteed 

by the switching logic, the active set is correctly identified and the NCO are satisfied.  

The key question lies in the design of the controller. Unlike optimization-based 

schemes, the required smoothening is provided naturally via appropriate controller 

tuning.  

3.4. Evaluation of the various methods  

A systematic approach for evaluating the performance of adaptive optimization 

schemes, named the extended cost design, has been presented in [30]. It incorporates 

measures of both the convergence rate and the effect of measurement noise. 

Interestingly, it is shown that in the presence of noise, a standard two-step algorithm 

may perform better, in terms of the proposed metric, than modified algorithms 

compensating for plant-model mismatch such as ISOPE. Another approach to 

performance characterization for adaptive optimization has been proposed in [15], 

which considers the backoff from active inequality constraints required to ensure 

feasibility. Therein, better adaptive optimization approaches produce smaller backoffs. 

4. Use of Measurements for Feasible and Optimal Operation 

This section discusses the two main rows in Fig.1. The feasibility issue is addressed 

first, and various gradient estimation techniques are summarized next. 

4.1. Feasible Operation 

In practical applications, guaranteeing feasible operation is often more important than 

achieving the best possible performance. Hence, first priority is given to meeting the 
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process constraints (such as safety requirements and product specifications) and only 

second priority to improving process performance in terms of the objective function. 

Interestingly, the results of a variational analysis in the presence of small parametric 

error support the priority given to constraint satisfaction over the sensitivity part of the 

NCO [6]. More specifically, it has been shown that, in addition to inducing constraint 

violation, failure to adapt the process inputs in the constraint-seeking directions results 

in cost variations in the order of the parameter variations ; in contrast, failure to 

adapt the inputs in the sensitivity-seeking directions gives cost variations in the order of 
2  only. 

The ability to guarantee feasible operation is addressed next for the three classes of 

methods presented above. In model-adaptation methods, since the plant constraints are 

predicted by the process model, constraint matching – but not necessarily full KKT 

matching – is needed to guarantee feasibility; however, this condition may be difficult 

to meet, e.g., when the model is updated by matching a set of outputs not directly 

related to the active constraints. With modifier-adaptation methods, feasibility is 

guaranteed upon convergence, provided that all the constraint terms are measured [6]; 

yet, ensuring feasibility does not necessarily imply that the correct active set has been 

determined due to the use of possibly inaccurate cost and constraint gradients, e.g., 

when gradient modifiers are not considered. Finally, in direct-input-adaptation methods, 

feasibility is trivially established when the active set is known and does not change with 

the prevailing uncertainty. However, as soon as the active set changes, tracking the 

current set of active constraints may lead to infeasibility. A switching logic can be used 

to remove this limitation, but it requires experimental gradient information to be 

available; the use of a barrier-penalty function approach has also been proposed [26]. 

If feasibility cannot be guaranteed, conservatism can be introduced in the form of 

constraint backoffs. Such backoffs are also introduced to enforce feasibility when some 

of the constraints are difficult to measure. 

4.2. Gradient Estimation  

Taking a system from a feasible to an optimal operating point requires accurate gradient 

information. In model-adaptation schemes, since the updated model is used to estimate 

the gradient, convergence is relatively fast. In the other two schemes, the gradient 

information has to be estimated experimentally, thereby slowing down convergence 

significantly. 

Perhaps the major bottleneck in modifier- and direct-input-adaptation schemes lies in 

the estimation of this gradient information. The finite-difference scheme used in the 

original ISOPE paper [19] is known to be inefficient for large-scale, slow and noisy 

processes. Hence, alternative techniques have been developed, which can be classified 

as either model-based approaches or perturbation-based approaches.  

Model-based approaches allow fast derivative computation by relying on a process 

model, yet only approximate derivatives are obtained. In self-optimizing control 

[12,21], the idea is to use a plant model to select linear combinations of outputs, the 

tracking of which results in “optimal“ performance, also in the presence of uncertainty; 

in other words, these linear combinations of outputs approximate the process 

derivatives. Also, a way of calculating the gradient based on the theory of neighbouring 

extremals has been presented in [13]; however, an important limitation of this approach 

is that it provides only a first-order approximation and that the accuracy of the 

derivatives depends strongly on the reliability of the plant model. 

The idea behind perturbation methods is to estimate process derivatives using variations 

in the operating point. Extremum-seeking control [1,14] attempts to obtain the cost 
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sensitivity by superposing a dither signal to the plant inputs. In dynamic model 

identification, the plant is approximated by a dynamic model during the transient phase 

between two successive steady states [16,31,11]. Since the derivatives are calculated 

from the identified dynamic model, the waiting time needed for reaching a new steady 

state is avoided. Other perturbation-based approaches, which remove the disadvantage 

of requiring additional dynamic perturbations, consist in using current and past (steady-

state) measurements to compute a gradient estimate based on Broyden’s formula [16]. 

For the case of multiple identical units operating in parallel, Srinivasan considered 

perturbations along the unit dimension rather than the time dimension, thereby allowing 

faster and more accurate derivative estimates [22]. In principle, the smaller the 

difference between the operating points, the more accurate the derivative 

approximation, but conditioning issues might arise due to measurement noise and plant 

disturbances. A way of avoiding this latter deficiency is presented in [10].  

5. Discussion 

In this section, we take a critical look at the three classes of adaptive optimization 

methods described above in terms of various criteria. We also argue in favor of 

modifier-adaptation methods, in the sense that they provide a parameterization that is 

tailored to the matching of the KKT conditions.  

The analysis presented in Table 1 shows many facets of the problem. It is interesting to 

see that modifier-adaptation methods can be positioned between the model-adaptation 

methods and direct-input-tracking methods; several attractive features are shared 

between the first and second columns, while other features are shared between the 

second and third columns. 

The methods differ mainly in the handles and in the measurements that are used for 

correction. The major drawback of model-adaptation schemes is that KKT matching is 

required for convergence to a (local) plant optimum, which can be very difficult to 

satisfy with the (arbitrary) parameterization  and (arbitrary) auxiliary measurements 

y p . In comparison, modifier-adaptation methods resolve the challenging task of 

selecting candidate parameters for adaptation by introducing the modifiers  as 

handles. Also, the measurements p  are directly related to the KKT conditions, and 

their number is equal to that of the handles , i.e., there results a square update 

problem. Hence, since these parameters are essentially decoupled, no sophisticated 

technique is required for the update of . Moreover, KKT matching becomes trivial, 

and reaching a (local) plant optimum is guaranteed upon convergence. This leads us to 

argue that modifier-adaptation methods possess the “adequate” parameterization and 

use the “adequate” measurements” for solving optimization problems on-line.  

Direct-input-adaptation methods differ from model- and modifier-adaptation methods in 

that a process model is not used on-line, thus removing much of the on-line complexity. 

Another important element of comparison is the use of experimental gradient 

information. The modifier- and direct-input-adaptation methods make use of 

experimental gradients to guarantee (local) optimality. However, obtaining this 

information is usually time consuming and slows down the entire adaptation scheme. 

Note that the use of an updated process model gives the ability to determine changes in 

the active set and typically provides faster convergence. Yet, in practice, the 

convergence of the model- and modifier-adaptation methods is often slowed down by 

the introduction of filtering that is required to avoid unstable behavior that would result 

because the corrections are local in nature. 
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 Model-adaptation 

methods 

Modifier-adaptation 

methods 

Direct-input 

adaptation methods 

Adjustable parameters    

Dimension of parameters n  ng + n (ng +1)  n  

Measurements y p  p  p  

Dimension of measurements ny  ng + n (ng +1)  ng + n (ng +1)  

Update criterion y y p 2
 p 2

 None 

Exp. gradient estimation No Yes Yes 

Repeated optimization Yes Yes No 

On-line use of process model Yes Yes No 

Controller type Model predictive Model predictive Any 

Smoothening External filter External filter Controller tuning 

Choice of active sets Optimization Optimization Switching logic 

Requirement for feasibility 

(no gradient information) 

Constraint 

matching 
None 

Correct 

active set 

Requirement for optimality  

(with gradient information) 

KKT 

matching 
None None 

Table 1. Comparison of various real-time optimization schemes 

6. Conclusions 

This paper provides a classification of real-time optimization schemes and analyzes 

their ability to use measurements to track the necessary conditions of optimality of the 

plant. The similarities and differences between the various schemes are highlighted, and 

it is shown that modifier-adaptation schemes use a parameterization, measurements, and 

an update criterion that are tailored to the matching of KKT conditions.  

To improve the performance of adaptive optimization, it may be useful to combine 

specific features of the various methods. For example, the combination of model 

adaptation (which ensures fast convergence for the first few iterations and detects 

changes in the active set) with direct-input adaptation (which provides the necessary 

gradients in the neighborhood of the plant optimum) has been demonstrated in [24]. 

Another interesting combination would be to use a modifier-adaptation approach at one 

time scale and perform model adaptation at a slower rate, thus giving rise to a two-time-

scale adaptation strategy. 
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