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Abstract 

One of the main limitations of the current plant supervisory control systems is 
the correct management of multiple simultaneous faults, which is crucial for 
supporting plant operators decision-making. In this work, Support Vector 
Machines (SVM) are used because of its proved efficiency dealing with 
multiclass problems in other technical areas. A Fault Diagnosis System has 
been developed implementing a multilabel approach using SVM and has 
been tested addressing a difficult diagnosis problem widely studied in the 
literature, the Tennessee Eastman process. Successful results have been 
obtained when diagnosing up to four simultaneous faults. These very first 
results are very promising since they have been achieved without any data 
processing or parameter tuning. Furthermore, they have been obtained just 
using training sets consisting of single faults, thus proving the achievement 
of a very powerful learning capacity. 
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1. Introduction 

In attention to the seriousness of accidents that may occur in chemical plants, 
incipient and reliable fault diagnosis is a significant requirement for preserving 
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public safety, as well as for enhancing the economy of the plant. Data-based 
diagnosis methods have faced such issues with different approaches, offering 
diverse solutions to the many difficulties arising in this area [1]. Yet, there still 
exist severe limitations on chemical plant fault diagnosis that have not been 
satisfactorily addressed. One of them is the management of simultaneous faults.  
This problem may be addressed by creating new faults from the combination of 
single faults [2,3]. However, this methodology results unfeasible in actual 
industrial problems when dealing with large numbers of isolated faults and/or 
when facing combinatorial problems resulting from the presence of double, 
triple faults and so on. The creation of qualitative systems based on the cause 
effect events relationship has also been investigated [4,5] but such approaches 
usually generate too many spurious solutions and make the response unreliable 
for plant operators. A rigorous formulation of the complete diagnosis problem 
has been recently developed [6] focusing on non-simultaneous faults and the 
related monolabel classification approach and introducing the multilabel case 
that deals with the multiple faults diagnosis problem.  
The Fault Diagnosis System (FDS) developed in this work is based on Support 
Vector Machines (SVM) [7], one of the most efficiently applied techniques 
developed by the Statistical Learning Theory. SVM allow properly dealing with 
the multiclass classification problem, using some binarization techniques from 
the Machine Learning field. They are based on the Structural Risk Minimization 
principle by the Statistical Learning Theory and have recently been gaining 
popularity in the Chemical Engineering field [8,9].  

2. Problem formulation and results quantification 

There are two ways of facing a classification problem such as the fault 
diagnosis is: the monolabel (mL) approach, which consists of classifying a set 
of patterns into an univocal class, and the multilabel (ML) approach, which 
allows assigning each input data to more than just one class.  
The general fault diagnosis problem has been mostly addressed under the mL 
approach (i.e. [2,3]). This approach requires the generation of new artificial 
classes for each possible faults combination and results into the exponential 
drop of the classification performance (due to the new misclassification 
chances) and the exponential growth of the computational effort. The main 
advantages of the ML approach are the ability to successfully achieve the 
training of the diagnosis system by only using single classes, plus the ability to 
classify both, single and multiple class cases, the latter by decomposing the 
multiple class cases into the corresponding combination of single classes. 
In this work, SVM under the ML approach have been used to take advantage of 
these features. The classification problem is next formulated and general 
indexes for evaluating solution performance are introduced. Consider a sample 
time ts, a process measurements vector Xs = {x1

s, x2
s,…, xv

s} obtained from plant 
data, and a given set of faults f = 1, 2,…, F that may be happening and 
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diagnosed. The faults happening and diagnosed for each ts can be characterized 
by two different matrices (H and D respectively) containing samples in rows 
and possible faults occurring in columns. Both matrices are next shown:  
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where hsf  = 1 and dsf  = 1 when fault f is happening or diagnosed respectively at 
sample time s and both are equal 0 otherwise. 
The general ML classification problem seeks for matching both matrices when 
any distribution of binary values is allowed, including null rows for the normal 
case (no faults) and rows including several non-null values (simultaneous 
faults). Two different measurements for the matching degree are given in the 
machine learning literature, precision and recall: 
 

]1:1Pr[)(Prec Siddhf ifijij ≤≤===  (2) 

where precision for fault f  has been defined as the conditioned probability of 
happening fault f conditioned to fault f has been diagnosed, and 
 

]1:1Pr[)(Rec Sihdhf ifijij ≤≤===  (3) 

recall for fault f, which is defined as the conditioned probability of the FDS of 
predicting fault f conditioned to the sample is fault f. The F1 index is a measure 
that combines both, precision and recall, and is used along this work as the 
measure for the general performance of a FDS. It is evaluated as: 
 

( ) ( )F1 2 Prec Rec Prec Rec= × × +  (4) 

3. Methodology 

The FDS is tested using the Tennessee Eastman (TE) process [10], which is a 
challenging and well-known benchmark allowing comparable results to the fault 
diagnosis community. The FDS is trained and tested with the original 20 faults 
and without any additional combination of faults. No preliminary filtering or 
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treatment is applied to the raw plant data. No tuning is applied to the SVM 
(default soft margin and lineal kernel). Hence, results presented do not show 
those optimal reachable, but outline the first crucial points from the multiple 
fault diagnosis analysis. Appropriate sizes for training and testing data sets were 
determined from a preliminary study on the F1 response (learning curve). 
Hence, 351 samples for each single fault were included in the training sets 
(351x20) whereas 1045 were used for building the testing sets (files are 
available at http://webon.euetib.upc.es/ciao/datos/escape2007.html). 

4. Results and discussions 

The performances of the mL and ML approaches are first tested and compared. 
Table 1 shows no significant differences on the values of the F1 index. It also 
shows that, both approaches, despite the ML advantage for managing 
simultaneous faults, provide a similar classification capability, even for those 
cases revealed more difficult (faults 3,5,9, etc.). From this preliminary study, 
faults 1,2,6,7,17 and 18 are selected for building up the new test data sets 
including simultaneous faults for validating the ML approach presented.  
Table 1. Single-fault diagnosis. F1 index for the mono-label (mL) multi-label (ML) approaches. 

 1 2 3 4 5 6 7 8 9 10  

mL  98.1 98.0 0.0 88.9 0.0 100 99.8 25.9 0.0 0.0  

ML  96.1 98.0 0.0 89.1 0.0 100 99.5 24.8 0.0 0.0  

 11 12 13 14 15 16 17 18 19 20 Average 

mL  0.0 9.2 26.3 0.0 0.0 11.8 97.4 89.9 0.0 89.3 41.7 

ML  0.0 0.0 22.1 0.0 0.0 11.5 97.5 90.5 0.0 84.9 40.7 

 
For comparative purposes, the results for single-fault diagnosis (Table 1) are 
obtained without the different parameter tuning that allows improving 
separately the performance of each of these approaches. These worst case 
results show the parallel shortcomings. Although incomparable, for the manual 
ad-hoc parameter tuning, results up to an average F1 = 61% may be obtained for 
the mL case [6]. 
Combinations of two, three and up to four simultaneous faults were simulated 
and results when diagnosing them are shown in Table 2. The first three tested 
pairs are successfully diagnosed as both single faults are identified when 
happening simultaneously with very high performance (F1). Very good 
performance is also obtained when diagnosing three and four simultaneous 
faults, although it is not surprising to get lower F1 values. When faults 2, 7 and 
17 are simulated at the same time, SVM is able to identify correctly the isolated 
faults that the system has been trained with. In the four simultaneous faults case, 
the F1 index just suffers a significant decrease for the 18th fault, while faults 2,7 
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and 17 are being correctly diagnosed by the system. Finally, Table 3 shows the 
performance details for the case of four simultaneous faults, including precision, 
recall, and the individual class assignment. One of the most significant points to 
be highlighted from these detailed results is the very low misdiagnosis rate (b in 
Table 3) of the FDS, which reveals great possibilities for the future. Notice that 
precision, recall and F1 index are shown as percentages in Tables 1,2 and 3. 
Table 2. Multiple-fault diagnosis. F1 index for multi-label (ML) approach. 

 1 2 6 7 17 18 

2 Simultaneous faults (1,2) 98.7 97.8 - - - - 

2 Simultaneous faults (6,7) - - 98.8 99.9 - - 

2 Simultaneous faults (17,18) - - - - 95.4 79.1 

3 Simultaneous faults (2,7,17) - 94.9 - 99.5 95.5 - 

4 Simultaneous faults (2,7,17, 18) - 94.5 - 71.3 93.5 14.6 

Table 3. Details for the classification of a case consisting of four simultaneous faults. 

 1 2 3 4 5 6 7 8 9 10 

a 0 898 0 0 0 0 556 0 0 0 

b 0 0 0 0 10 21 0 1 206 100 

c 0 105 0 0 0 0 447 0 0 0 

d 1045 42 1045 1045 1035 1024 42 1044 839 945 

Prec  - 100 - - 0.0 0.0 100 0.0 0.0 0.0 

Rec - 89.5 - - - - 55.4 - - - 

F1 - 94.5 - - - - 71.3 - - - 

 11 12 13 14 15 16 17 18 19 20 

a 0 0 0 0 0 0 881 79 0 0 

b 0 415 1 56 15 83 0 0 0 0 

c 0 0 0 0 0 0 122 924 0 0 

d 1045 630 1044 989 1030 962 42 24 1045 1045 

Prec - 0.0 0.0 0.0 0.0 0.0 100 100 - - 

Rec - - - - - - 87.8 7.9 - - 

F1 - - - - - - 93.5 14.6 - - 

(a) Samples happened and diagnosed (b) Samples diagnosed but not happened (c) Samples 
happened and not diagnosed (d) Samples not happened and not diagnosed. 
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5. Conclusions 

Fault diagnosis in chemical plants has been usually addressed as a monolabel 
(mL) classification problem. This work adopts the multilabel (ML) approach for 
which a general formulation is provided. It has been implemented using SVM 
and a FDS has been developed for addressing the actual problem of diagnosing 
faults occurring simultaneously. Thus, the technique presented does not need 
creating new faults for modeling a group of simultaneous faults, which results 
in allowing training with only the original faults, avoiding the artificial increase 
of the computational burden, and keeping the classification performance. 
The system has been validated using a well-established benchmark and well-
established performance indexes from the machine-learning field. Examples 
have been prepared for addressing up to four simultaneous faults and successful 
results have been obtained. Moreover, these very first results are especially 
promising since they have been obtained without attending some key aspects: 
data processing, parameter tuning, and training with simultaneous faults. 
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