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Abstract 

In this work a computer-aided tool to modelling of biotechnological processes is 
built up with focus on developing methodologies that can be used always that a 
re-estimation of parameters is necessary. The ethanol fermentation process is 
used as a case study. The performance of a hybrid neural model and a first-
principles model, both considering the effect of temperature on the kinetics, are 
evaluated not only by their accuracy in describing experimental data, but mainly 
by the difficulties involved in the adaptation of their parameters. The results 
show that the proposed tool is very efficient to follow changes in operating 
conditions and their impact on the system kinetics which is an important issue 
to lead the process to be operated at high level of performance. 
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1. Introduction 

There are many minor, but important, industrial problems associated with the 
ethanol fermentation processes to be solved nowadays, when optimal operation 
is a target. Among them is the lack of the processes robustness in the presence 
of fluctuations in operational conditions, which leads to changes in the kinetic 
behavior, with impact on yield, productivity and conversion. These changes are 
very common in ethanol plants, where they occur not only due to the variations 
in the quality of the raw material but also due to variations of dominant 
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microorganism in the process. Another issue in ethanol fermentation processes 
is the influence of temperature on the kinetics. It is difficult to support a 
constant temperature during large-scale alcoholic fermentation and variations in 
temperature affects productivity through changes in kinetics as well as in 
microorganism lifetime. Thus, a description of the influence of temperature on 
kinetics of the microorganism involved is essential for a reliable mathematical 
modeling to be used in process optimization, control and operation. 
In this work an adaptive methodology for hybrid neural modeling of the effect 
of temperature on the kinetics of batch fermentation was proposed. The rate 
expressions for cell growth, substrate consumption and product formation are 
described by multilayer perceptron neural networks (MLPNN) and the neural 
network parameters are re-estimated in an adaptive scheme when there are 
changes in operational conditions and fluctuations in the quality of raw material. 
The objective of this work was to present a comparison of methodologies for 
the adaptive modeling of biotechnological processes. The use of first-principles 
and hybrid neural models [1-3] was evaluated considering the accuracy with 
which they describe experimental data and the difficulties involved in the re-
estimation of the kinetics parameters. 

2. Experiments for developing the mathematical models 

Experiments used to develop the mathematical models (first data set) 
Five batch experiments (at 28, 31, 34, 37 and 40oC) were used to estimate the 
parameters of the proposed models. Details about these experiments are 
described elsewhere [4]. 
Experiments with changes in operational conditions (second data set) 
Another five batch experiments (at 30, 31.2, 34, 36.8 and 38oC) were used to 
validate the methodologies for re-estimation of kinetic parameters. Sugar cane 
molasses was from a harvesting period different from that used in the first 
experiments and so, there is a change in the quality of raw material when this 
data set is compared to the first one.  

3. Mathematical modeling 

3.1. First-Principles Modeling 

First-principles models comprise the mass balance equations, with 
microorganism growth, substrate consumption and ethanol formation for a 
batch reactor described as follows: 
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The methodology for the calculation of the kinetic parameters as a function of 
temperature used in this work is described below: 
(i) Determine the appropriate forms of kinetic rates.  
Eq. (4) shows the cell growth rate equation, rx, which includes terms for such 
types of inhibitions. 
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In this study, Luedking-Piret expression was used to account for the ethanol 
formation rate, rp. 

XmrΥr pxpxp += ; XmΥrr xxxs )/( +=  (5-6)
The substrate consumption rate, rs, is given by Eq. (6), describing the sugar 
consumption during fermentation, which leads to cell mass and ethanol 
formation. 
(ii) Estimate a set of temperature dependent parameters for each temperature 
considered in the experiments. 
Some of the parameters in the kinetic expressions above (μmax, Xmax, Pmax, Υx 
and Υpx) are known to be dependent on temperature [5]. Let θ specify the 
parameters vector, which contains all the temperature-dependent parameters. 
The objective of the mathematical estimation of model parameters is to find out 
θ by minimizing the objective function, min E(θ): 
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where Xen, Sen and Pen are the measured concentrations of cell mass, substrate 
and ethanol at the sampling time n. Xn, Sn and Pn are the concentrations 
computed by the model at the sampling time n. Xemax, Semax and Pemax are the 
maximum measured concentrations.. 
The parameters which are not temperature dependent are fixed in the values 
given by Atala et al. [5] and are: Ks = 4.1 kg/m3, Ki = 0.004 m3/kg, mp = 0.1 
kg/[kg⋅h], mx = 0.2 kg/[kg⋅h], m =  1.0 and n = 1.5. 
(iii) Propose an equation to describe the influence of temperature and fit it to 
the optimized values obtained for each temperature. 
The influence of temperature on μmax, Xmax, Pmax and Υpx, is non-linear and Eq. 
(8) can be used to express it: 
temperature-dependent parameter = ( ) ( )TDCTBA expexp +  (8) 

The influence of temperature on Υx was described by Eq. (9): 
temperature-dependent parameter = ( )TBAexp  (9) 

In these equations, A, B, C and D are constants, and T is the temperature in oC. 
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3.2. Hybrid Neural Modeling 

In this study, the structure of the hybrid neural model is derived taking into 
consideration the mass balances (Eqs. 1-3) for the batch fermentation process, 
with neural networks describing the rate expressions for cell growth, rx, 
substrate consumption, rs, and product formation, rp.  
For the current study, each rate expression (rx, rs, and rp) was modeled with a 
MLPNN with four inputs (concentrations of biomass, substrate and ethanol, and 
temperature), a single hidden layer, described mathematically by Eq. (10), and 
one output. Both input and output data were normalized to the range [0, 1]. 
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In Eq. (10), θ specifies the parameter vector, which contains all the adjustable 
parameters of the network; i.e., the weights and biases {wj,l Wj}.  
It follows from Cybenko's theorem [6] that all continuous functions can be 
approximated to any desired accuracy with a network of one hidden layer of 
sigmoidal (f(x) = 1/(1+exp-x)) hidden units (nodes) and a layer of linear output 
nodes. Such structure is used in this work. Nguyen–Widrow initialization 
algorithm is used for initialization of weights and biases and is subsequently 
trained with the Levenberg–Marquardt algorithm in Matlab’s neural network 
toolbox. Training was stopped after 1000 epochs. The appropriate number of 
nodes to be included in the hidden layer was addressed with the cross-validation 
technique in order to avoid model over-fitting.  

4. Results and Discussion 

The first-principles and hybrid neural models kinetic parameters were estimated 
using the results of the first five experiments [4]. When the same models were 
used to describe the second data set, the prediction quality is poor. These results 
show that conditions such as molasses harvesting and medium composition 
affect the process performance (kinetics and dynamic behavior). Such changes 
occur frequently in industrial operations, and this reinforces the importance of 
adaptation of kinetic parameters. 

4.1. Results for First-Principles Modeling 

For the re-estimation of the parameters, Eqs. (1-3) were solved using a 
FORTRAN program with integration by an algorithm based on the fourth-order 
Runge-Kutta method. The temperature dependent parameters (μmax, Xmax, Pmax, 
Υx and Υpx in Eqs. 4-6) were determined by minimizing Eq. (7) using a quasi-
newton algorithm. The FORTRAN IMSL routine DBCONF was used for this 
purpose. This procedure was repeated for each temperature considered (30, 
31.2, 34, 36.8 and 38oC). The parameters that are not temperature-dependent 
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were not altered. In order to describe the correlation between temperature and 
the parameters, the data was smoothed and interpolated and the expressions 
given by Eqs. (8) and (9) were fitted. Figure 1 shows the behavior predicted by 
Eqs. (8) and (9) with temperature and the optimized parameters estimated from 
the experimental data in the range of 30-38oC. The performance of the model 
with re-estimated parameters in describing the experimental data at 31.2oC is 
shown in Figure 2. It can be seen that the model with re-estimation of the 
temperature dependent kinetic parameters described accurately the experimental 
data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Parameter behavior with 
temperature at 30, 31.2, 34, 36.8 and 
38oC 

Figure 2. Experimental (cell mass, X(■); 
substrate, S(▲) and ethanol, P(●)) and modeling 
(Hybrid neural model―; First-principles model--
-) results with parameters reestimation at 31.2oC 

4.2. Results for Hybrid Neural Model 

The neural network parameters were reestimated for the new experiments using 
the methodology detailed as follows. Initially, the appropriate neural network 
architecture, including the initial parameter set, is determined. After this step, if 
there are changes in operational conditions and/or fluctuations in the quality of 
raw material, the model can be directly adapted by minimizing Eq. (7). In this 
case, θ specify the parameter vector, which contains all the neural network 
parameters. The variables Xn, Sn and Pn are the concentrations computed by the 
hybrid neural model at the sampling time n. If a minimum is reached, the re-
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estimation is terminated. If not, the neural network parameters are adapted and a 
new iteration begins with the hybrid neural model simulation. The result at 
31.2oC is shown in Figure 2. It can be noticed that the adapted hybrid neural 
model effectively tracks the desired trajectory of experimental observations for 
concentrations of biomass, substrate and product. 

5. Concluding remarks 

Comparing the adaptation procedures, the re-estimation of the network weights 
was simpler than the re-estimation of the kinetic parameters of the first-
principles model. Even considering that the rate equations and the functions that 
describe the parameters dependence with temperature are known in the first-
principles model, the estimation problem is complex and time consuming. This 
suggests that using a first-principles model in a situation where frequent re-
estimation is necessary could be a limitation. The updating of the hybrid neural 
model, however, is straightforward. The structure of the neural network 
(number of layers and of neurons in each layer) was fixed and the weights were 
reestimated. The use of this computer-aided tool enables the implementation of 
an on-line re-estimation procedure. Although this could not be a very significant 
advantage for a process well studied and known as the alcoholic fermentation, it 
can make a great difference for less known biotechnological processes, as it 
enables a rapid determination of a mathematical description that can be used for 
on-line optimization, soft sensor and control. 

Acknowledgements 

The authors acknowledge FAPESP and CNPq for financial support. 

References 

1. D.C. Psichogios and L.H. Ungar, AIChE J., 38, (1992), 1499–1511. 
2. H.J.L. Can van, H.A.B. te Braake, C. Hellinga, K.Ch.A.M. Luyben and J.J. Heifnen, 

AIChE J., 42, (1996), 3403–3418. 
3. L. F. M. Zorzetto, R. Maciel Filho and M. R. Wolf-Maciel, Comput. Chem. Eng., 24, 

(2000), 1355–1360. 
4. E. Ccopa Rivera, A.C. Costa, D.I.P. Atala, F. Maugeri, M.R. Wolf and R. Maciel Filho, 

Process Biochem., 41, (2006), 1682-1687. 
5. D.I.P. Atala, A.C. Costa, R. Maciel Filho and F. Maugeri, Appl. Biochem. Biotech., 91-93, 

(2001), 353-366. 
6. G. Cybenko, Math. Control Signal, 2, (1989), 303-314. 


