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Abstract 

Phenomenological and empirical nonlinear models were built for describing 
experimental data of Kluyveromyces cicerisporus batch fermentation on whey, 
at different temperature and pH levels. The phenomenological model is based 
on cell death; substrate consumption due to product formation, cell growth and 
maintenance; substrate/product inhibition and growth-associated/nongrowth-
associated product formation. The parameters estimation of the 
phenomenological model was carried out using the maximum likelihood 
estimation method. The empirical nonlinear neural network model identification 
employed traditional and the dynamic simulation analysis as the validation 
procedures. 
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1. Introduction 

Cheese whey is the liquid remaining following the precipitation and removal of 
milk casein during cheese-making. It represents an important environmental 
problem because of the high volumes produced and its high organic matter 
content. Bioconversion of whey lactose to single cell protein, ethanol or 
methane reduces more than 75% of the organic content, as required by the 
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pollution laws, which are forcing dairy industries to find alternative processes; 
in addition, owing to the energy crisis, alcohol fermentation of organic residues 
has been under growing investigation. The utilization of cheese whey powder, 
under different pH levels, in order to produce ethanol, was investigated by 
Kargi et al. [1]. The experiments showed that the maximization of product 
formation was obtained at pH=5. A mathematical model was developed for 
predicting single cell protein production from cheese whey, using 
Kluyveromyces fragilis under different retention times, mixing speeds and air 
flow rates [2]. Lee et al. [3] applied response surface analysis to optimize the 
factors affecting the growth (temperature and pH) of Ganoderma lucidum 
mycelium, using cheese whey as substrate. The method of least-squares was 
used to estimate the parameters of a quadratic polynomial, representing 
mycelial concentration as a function of temperature and pH. As can be observed 
from literature, there is a lack concerning modeling investigations of single cell 
protein and ethanol production by Kluyveromyces cicerisporus under pH and 
temperature varying conditions. The main objective of this paper is building 
phenomenological and empirical nonlinear models, employing the maximum 
likelihood estimation method [4] and the identification/validation methodology 
proposed by Vega et al. [5] for empirical models identification, through the use 
of experimental data. 

2. Materials and Methods 

Kluyveromyces cicerisporus was isolated from crude milk. Stock cultures were 
mensal cultivated in lactose (2%), peptone (1%) and agar-agar (3%). The 
inoculation was done in 500 cm³ Erlenmeyer flasks, cultured for 12-24 h, 
depending on the experiment. The fermentation of whey, containing 5.4% of 
lactose, being aerated with 2.8 dm³ air/ dm³ medium/min and stirred at 200 rpm, 
was carried out in a 2 dm³ batch fermentor, under different temperatures and pH 
levels, in triplicate. Cellular quantification was done in a Neubauer camera, 
using dilutions that produced 200-300 cells/0.1 mm³. The standard error (S.E.) 
in the biomass determination was estimated at 4% from replicated 
measurements. The determination of lactose content in whey was done using the 
picric acid method [6], which presents a S.E. of 3%. A potentiometer was used 
for determining pH measurements. The ethanol concentration was measured by 
gas chromatography (S.E. < 2%). 

3. Mathematical Modeling 

For phenomenological modeling purposes, the specific growth rate (Eq. 1) was 
described as a function of an apparent Michaelis constant, which is proportional 
to biomass concentration. Medium constituents (substrate and product) inhibited 
the microorganism growth. The cell growth model also accounted for cell death, 
Eq. 2. The model considered substrate consumption for cell growth, 
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maintenance and product formation, Eq. 3. The product formation kinetics 
combined growth-associated and nongrowth-associated contributions, Eq. 4. 
The model parameters were estimated using the maximum likelihood principle, 
which presents rapid convergence due to the similarity to a Gauss-Newton 
iteration method [7] and to a step-limiting procedure introduced by Law and 
Bailey [8]. 
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Literature unveils that the neural network (NN) approach has proved to be a 
useful tool and is the most popular framework for empirical model 
development. It is well known that the construction of an efficient NN is a 
function of many factors. The amount and appropriateness of the available 
training data is an important factor. In addition, the optimal NN structure is not 
easy to pre-specify; the optimization of the NN weights can result in contrasting 
generalization characteristics and alternative convergence criteria for training 
can also result in different solutions. All these steps represent very challenging 
theoretical and practical problems, for a general theory is not available. NNs 
were validated in terms of the traditional methods [9-10] and in terms of their 
complex static and dynamic behavior, using dynamic simulation analysis 
methodology [5]. 

4. Results & discussions 

The maximum likelihood principle provided an estimation of phenomenological 
model parameters from experimental data (Table 1) and also an estimate of the 
uncertainties in the estimated parameters (variance-covariance matrix), 
providing the significance of the parameters. Table 1 presents the mean value of 
the parameters using a confidence interval (CI) of 95%.  
Experimental investigation showed that optimal bioconversion conditions were 
5 ≤ pH ≤ 7 and 30ºC-35°C. 
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A three layer feedforward neural network, using hyperbolic tangent and linear 
activation functions at the hidden and output layers, respectively, was 
employed. Past and actual time, lactose, ethanol and cell concentrations were 
the input data for predicting future lactose, ethanol and cell concentrations. In 
accordance with standard cross-validation procedures [9-10], a hidden layer 
with an optimal number of neurons (3 neurons) was selected. In order to build 
NN empirical models, two independent data (training and validation sets), 
containing different data sets, were used. A total of six neural models were built 
for representing each pH and temperature experimental conditions (Fig. 1). 
Spurious solutions were obtained in all NNs trained with incomplete data set, no 
matter the values used to initialize the NN parameters. The empirical model 
dynamic patterns were similar to the one shown by the bioreactor (Fig. 1). 
For generalized empirical model building purposes, a three layer feedforward 
neural network, using hyperbolic tangent and linear activation functions at the 
hidden and output layers, respectively, was selected. The architecture 
comprised, as input information, past and actual pH, temperature, time, lactose, 
ethanol and cell concentrations and, as output data, future lactose, ethanol and 
cell concentrations. 

Table 1 – Kinetic values (mean ± 95% CI) 

 pH=4 
T=30°C 

pH=5 
T=30°C 

pH=5 
T=35°C 

pH=6 
T=30°C 

pH=7 
T=30°C 

máxμ  
[h-1] 

0.71 ± 
0.16 

1.01 ± 0.26 0.82 ± 
0.17 

0.72 ± 0.10 0.80 ± 0.12 

Sk  
[g/l] 

20.45 ± 
4.27 

20.0 ± 6.04 20.15 ± 
1.93 

19.12 ± 
2.20 

19.49 ± 1.84 

XSY  
[g/g] 

0.26 ± 
0.05 

0.33 ± 0.08 0.31 ± 
0.03 

0.31 ± 0.03 0.36 ± 0.03 

PSY  
[g/g] 

0.34 ± 
0.05 

0.31 ± 0.08 0.34 ± 
0.04 

0.34 ± 0.04 0.32 ± 0.03 

ms  
[h-1] 

9.75.10-6 
± 
3.03.10-6 

0.00001± 
2.83.10-6  

9.95.10-6 
± 
1.22.10-6  

9.53.10-6 ± 
1.35.10-6  

1.06.10-5 ± 1.45.10-6  

dk  
[h-1] 

0.03 ± 
6.20.10-3  

0.02± 
8.43.10-3  

0.02 ±  
2.04.10-3  

0.02 ± 0.02 0.02 ± 1.23. 10-3 

alfa  
[-] 

4.56.10-6 
± 
1.70.10-6  

0.0001 ± 
1.82.10-5  

0.0001 ± 
1.11.10-5  

9.78.10-6 ± 
2.53.10-6  

7.6.10-6 ± 1.33.10-6  

beta  
[-] 

0.25 ± 
0.06 

0.18 ± 0.05 0.50 ± 
0.04 

0.25 ± 0.02 0.18± 0.01 

isk  
[g/l] 

68.66 ± 
12.82 

70.0 ± 9.67 70.07 ± 
6.61 

70.73 ± 
8.66 

63.91 ± 6.41 

iPk  
[g/l] 

10.16 ± 
2.46 

10.0 ± 3.47 10.06 ± 
0.85 

9.00 ± 0.68 9.95 ± 0.86 
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It can be observed from the dynamic simulations of Fig. 2, showing substrate, 
ethanol and cell concentrations as the parameters (pH and temperature) undergo 
changes, that the general neural model was able to predict successfully the 
optimal operation range, also indicating that at 40°C and pH=5 the 
bioconversion is minimum. Anomalous NN models were avoided by using 126 
experimental data points, covering the full temperature and pH ranges. 
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Figure 1 – Model predictions and experimental data.  Substrate.  Ethanol.  Cell. − 
Phenomenological model. - - Neural network model. 
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5. Conclusions 

The maximum likelihood method and the dynamic analysis validation technique 
were used in order to build confident phenomenological and empirical models. 
The generalized neural model should be the preferred modeling technique for is 
able to predict substrate, ethanol and cell concentrations under varying pH and 
temperature conditions. However, empirical models are unsafe for extrapolation 
purposes, being most appropriate, for this case, the use of a phenomenological 
model incorporating on the specific growth rate, for example, both pH and 
temperature effects, a next step of the authors research. 

Acknowledgements 

We are indebted to CNPq/Brazil for supporting this research. 

References 

1. F. Kargi and S. Ozmihci, Enzyme Microb. Technol., 38 (2006) 711. 
2. A.E.Ghaly, M. Kamal and L.R. Correia, Bioresour. Technol., 96 (2005) 1143. 
3. H. Lee, M.Song, Y. Yu and S. Hwang, Biochem. Eng. J., 15 (2003) 93. 
4. J.C. Pinto, M.W. Lobão and J.L. Monteiro, Chem. Eng. Sci., 45 (1990) 883. 
5. M.P. Vega, CM. Scheid, K.B. Coimbra and J.A. Mattos, In: MacGregor, Shah &. 

 (Org.). Dynamics and Control of Process Systems, 1 (2005) 697. 
6. I.C. Carvalho, I.L.C.T., 33 (1978) 3. 
7. T.F.Anderson, D.S. Abrams and E.A. Grens II, AICHE J.,24 (1978) 20. 
8. V.J.Law and R.V. Bailey, Chem.Eng.Sci.,18 (1963) 189. 
9. J.F. Pollard, M.R Broussard, D.B. Garrison and K.Y. San, Comput. Chem. Eng., 16 

 (1992) 253. 
10. G.R. Sriniwas, Y. Arkun, I-L Chien, and B.A. Ogunnaike, Journal of Process Control, 5 

 (1995) 149. 

24 28 32 36 40 44
Temperature, [h]

0

20

40

60

80

C
on

ce
nt

ra
tio

n,
 [g

/l]

Substrate

Ethanol

Cell

Neural network model

pH=5

 
4 5 6 7

pH

0

20

40

60

80

C
on

ce
nt

ra
tio

n,
 [g

/l]

Substrate

Ethanol

Cell

Neural network model

T=30°C

 
Figure 2 – Generalized neural network model.  Substrate.  Ethanol.  Cell. − 
Phenomenological model. - - Neural network model. 


