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Abstract 

Cluster analysis of DNA expression data is a useful tool for identifying 
biologically relevant gene groupings. It is hence important to apply a rigorous 
yet intuitive clustering algorithm to uncover these genomic relationships. Here, 
we describe a clustering framework [1,2] based on a variant of the Generalized 
Benders Decomposition, the Global Optimum Search [3,4]. We apply the 
proposed algorithm to experimental DNA microarray data and compare the 
results to that obtained with some commonly-used algorithms. We also propose 
an extension to iteratively uncover the optimal biologically coherent structures.  
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1. Introduction 

The aim of cluster analysis is to establish a set of clusters such that the data in a 
cluster are more similar to one another than they are anywhere else. Clustering 
is used in many disciplines, such as market research, social network analysis, 
and geology, thus reflecting its broad utility as a key step in exploratory data 
analysis [5]. In biology, identifying genes that are co-regulated provides helps 
to extract regulatory motifs for transcription factors, allowing assembly of 
predictive transcriptional networks [6]. This information also provides insights 
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into the functions of unknown genes, since functionally related genes are often 
co-regulated [7]. Furthermore, clustered data provides identification of distinct 
categories of otherwise indistinguishable cell types, which can have huge 
implications in areas such as disease progression [8]. In sequence analysis, 
clustering is used to group homologous sequences into gene families.  
Two popular similarity metrics are correlation and Euclidean distance. The 
latter is often used, since it is intuitive, can be described by a familiar distance 
function, and satisfies the triangular inequality. Clustering methods that employ 
asymmetric distance measures [9, 10] are more difficult to intuitively 
comprehend even though they may be well suited to their intended applications. 
The earliest work on clustering emphasized visual interpretations for the ease of 
study, resulting in methods that utilize dendograms and color maps [11]. Other 
examples of clustering algorithms are (a) Hierarchical Clustering, (b) K-
Methods, (c) Fuzzy Clustering, (d) Quality Cluster Algorithm (QTClust), (e) 
Graph-Theoretic Clustering, (f) Artificial Neural Networks for Clustering such 
as the Self-Organizing Map (SOM) and a variant that combines the SOM with 
hierarchical clustering, the Self-Organizing Tree Algorithm (SOTA), and (g) 
Information-Based Clustering.  

2. Proposed Approach  

2.1. Notation  

We denote the measure of distance for a gene i, for i = 1,….,n having k features, 
for k = 1,….., s as aik. Each gene is to be assigned to only one of c possible 
clusters, each with center zjk, for j = 1,….,c. The binary variables wij indicates 
whether gene i falls within cluster j (wij = 1, if yes; wij = 0, if no).  

2.1.1. Hard Clustering by Global Optimization 

The approach minimizes the Euclidean distances between the data and the 
assigned cluster centers as: 
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To handle the nonlinear product of the variables wij and zjk, we can introduce 
new variables yijk along with additional constraints [3] to reduce the formulation 
to an equivalent Mixed-Integer Linear Programming (MILP) problem. This 
however results in a very large number of variables. Without the yijk variables 
however the problem is nonlinear, which is difficult to solve. Theoretical 
advances and prominent algorithms for solving such problems are addressed in 
[3,12,13]. We use a variant of the Generalized Benders Decomposition (GBD) 
algorithm [3, 4], the Global Optimum Search (GOS) to handle the nonlinear 
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problem. The GOS decomposes the problem into a primal problem and the 
master problem. The former solves the continuous variables while fixing the 
integer variables and provides an upper bound solution, while the latter finds the 
integer variables and the associated Lagrange multipliers while fixing the 
continuous variables and provides a lower bound solution. The two sequences 
are iteratively updated until they converge at an optimal solution in a finite 
number of steps. 

2.1.2. Determining the Optimal Number of Clusters  

Most algorithms do not contain screening functions to determine the optimal 
cluster number. On the other hand, while it easy to propose indices of cluster 
validity, it is difficult to incorporate these measures into clustering algorithms 
and appoint thresholds on which to define key decision values [13,14]. Some 
indices used to measure cluster validity are the Dunn’s validity index, the 
Davis-Bouldin validity index, and the Silhouette validation technique. We adapt 
the concept of a clustering balance [15], which is a weighted sum of two error 
sums and has been shown to have a minimum value when intra-cluster 
similarity is maximized and inter-cluster similarity is minimized. 

2.1.3. Proposed Algorithm (EP_GOS_Clust)  

Gene Pre-Clustering: We pre-cluster the original data by proximity studies to 
reduce the computational demands by (i) identifying genes with very similar 
responses, and (ii) removing outliers deemed to be insignificant to the clustering 
process. To provide just adequate discriminatory characteristics, pre-clustering 
can be done by reducing the expression vectors into a set of representative 
variables {+, o, -}, or by pre-grouping genes that are close to one another by 
correlation or some other distance function.    
 
Iterative Clustering: We let the initial clusters be defined by the genes pre-
clustered previously, and find the distance between each of the remaining genes 
and these initial clusters and as a good initialization point placed these genes 
into the nearest cluster. For each gene, we allow its suitability in a limited 
number of clusters based on the proximity study. In the primal problem of the 
GOS algorithm, we solve for zjk. These, together with the Lagrange multipliers, 
are used in the master problem to solve for wij. The primal gives an upper bound 
solution and the master a lower bound. The optimal solution is obtained when 
both bounds converge. Then, the worst-placed gene is removed and used as a 
seed for a new cluster. This gene has already been subjected to a membership 
search so there is no reason for it to belong to any one of the older clusters. The 
iterative steps are repeated and the number of clusters builds up gradually until 
the optimal number is attained.  
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Iterative Extension: Indication of 
strong biological coherence is 
characterized by good P-values based 
on gene ontology resources and the 
proportion of genes that reside in 
such clusters. As an extension, we 
would like to mine for the maximal 
amount of relevant information from 
the gene expression data and sieve 
out the least relevant data [16]. This 
is important because information 
such as biological function 
annotation drawn from the cluster 
content is often used in the further 
study of co-regulated gene members, 
common reading frames, and gene 
regulatory networks. From the 
clustered genes, we impose a 
coherence floor to demarcate genes 
that have already been well clustered. 
We then iterate to offer the poorly-
placed genes an opportunity to either 
find relevant membership in one of 
the strongly coherent clusters, or regroup amongst themselves to form quality 
clusters. Through this process, a saturation point will be reached eventually 
whereby the optimal number of clusters becomes constant as the proportion of 
genes distributed within clusters of high biological coherence levels off.  
A schematic of the EP_GOS_Clust algorithm can be seen in Figure 1.  

2.2. Case study 

In this study, we used experimental microarray data from a study in the role of 
the Ras/protein kinase A pathway (PKA) on glucose signaling in yeast [17]. 
These experiments analyzed mRNA levels in cell samples extracted at various 
times following stimulation by glucose or following activation of either Ras2 or 
Gpa2, which are small GTPases involved in the metabolic and transcriptional 
response of yeast cells to glucose [18]. Levels of RNA for each of the 6237 
yeast genes were measured using Affymetrix microarray chips and after 
filtering, we retained 5652 genes. The clustering algorithms to be compared are 
(a) K-Means, (b) K-Medians, (c) K-Correlation, (d) K-CityBlock, (e) K-
AvePair, (f) QTClust, (g) SOM, (h) SOTA, and (i) EP_GOS_Clust.   
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2.3. Results & discussions 

A good clustering procedure should minimize the intra-cluster error sum and 
maximize the inter-cluster error sum. Even without the iterative extension, we 
found the error sums of the clusters found using EP_GOS_Clust outperform that 
of the other clustering methods. Also, EP_GOS_Clust predicts the lowest 
number of optimal clusters. Together with the quality of the error sum 
comparisons, we infer the superior ‘economy’ of EP_GOS_Clust in producing 
tighter data groupings by utilizing a lower number of clusters, as it is actually 
possible to achieve tight groupings by using a large number of clusters, even 
with an inferior clustering algorithm. We also found EP_GOS_Clust capable of 
uncovering strongly correlated clusters with high levels of biological coherence. 
Tables 1 and 2 shows that EP_GOS_Clust performs consistently well when 
compared against the significance of cluster biological coherence uncovered by 
the other clustering methods, and this is before the application of the proposed 
extension.   
 

 
With the extension, we found the original clustering results to be significantly 
improved. For instance, the proportion of genes that fall in clusters of -log(P) 
values of above 3 went from 65% to over 80% and the average cluster 
correlation improved by over 5%. This showed the extension to be useful and 
relevant in refining the initial clusters for optimal biological coherence.  
We have also tested the EP_GOS_Clust algorithm with its extension on a 
number of other data sets (not described here) and have shown that the level of 
clustering quality is consistently high compared to other clustering techniques 
and that the extension is able to improve the clusters’ level of biological 
coherence.      
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3. Conclusions 

In our study, we propose a novel clustering algorithm (EP_GOS_Clust) based 
on an MINLP formulation, and apply a novel decomposition technique to solve 
the MINLP optimization problem. We test our proposed algorithm on a large 
dataset of gene expression patterns from the yeast Saccharomyces Cerevisiae, 
and show that our method compares favorably with other clustering methods. 
We also highlighted an extension to the clustering algorithm that is able to 
further refine the level of biological coherence of the clusters, which is 
particularly useful for further genomic and cellular network research.  
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