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Abstract 

This paper presents a new mixed integer nonlinear model (MINLP) for the 
periodic scheduling of multistage continuous plants with a single equipment 
unit per stage, where all units are subject to sequence dependent changeovers. 
The formulation is based on the resource task network (RTN) process 
representation, features combined processing and changeover tasks and does not 
require an iterative procedure over the total number of event points in the time 
grid. The new multiple time grid formulation is compared to a single time grid 
formulation through the solution of a few example problems taken from the 
literature with the results showing that the proposed formulation is significantly 
more efficient computationally. 
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1. Introduction 

Extensive reviews of optimization approaches for scheduling have recently 
appeared in the literature [1,2]. These focus mostly on batch processes, which 
have received considerable attention in the literature, whereas much less work 
involving the scheduling of continuous plants has been reported, despite their 
practical importance. Furthermore, one of the trends in the chemical industry is 
to move towards continuous flexible multiproduct plants that can respond more 
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quickly to demand changes and that can handle a large product portfolio. The 
short-term mode of operation has also been preferred over a cyclic mode. 
Periodic scheduling is suitable wherever product demands are stable over 
extended periods of time and can be used to address non-cyclic problems 
whenever a long time horizon is involved, by periodically repeating a 
production pattern. 
Time representation is the most important issue concerning the classification of 
scheduling models [1] and continuous-time formulations have been in the 
spotlight in the last 10 years. Those relying on time grids can be divided into 
single and multiple time grid formulations and Shaik et al. [3] identified the 
formulations of Janak et al. [4] and Castro et al. [5] as the best multiple and 
single time grid formulations for multipurpose batch plants, respectively. For 
multistage problems, Castro et al. [6] presented two very efficient short-term 
multiple time grid formulations for which specifying the total number of event 
points that lead to global optimal solutions is not an issue. This paper extends 
their work and presents a new periodic formulation that accounts for the 
material processed by the several tasks and also for inventory profiles. The 
definition of the general problem is taken from [7]. 

2. Problem definition 

Given a set of orders i∈I that must follow a sequence of processing stages k∈K 
(with a single equipment unit per stage) to reach the condition of final products 
and their: i) maximum processing rates max

,kiρ (kg/h); ii) sequence dependent 
changeovers  cli,i’,k (h); iii) minimum demand rates di (kg/h); iv) value ci ($/kg); 
v) intermediate storage cii,k ($/kg); vi) final storage cfi ($/kg/h) and vii) 
transition costs cti,i’,k ($/h); the objective is to find a cyclic schedule that 
maximizes the profit. More specifically, we will determine the: a) cycle time; b) 
order sequencing; c) length of processing and cleaning tasks; d) processing rate 
of continuous tasks; e) amounts of products to be produced; f) levels of 
intermediate storage and final product inventories.  

3. New multiple time grid formulation 

The new continuous-time formulation is conceptually similar to formulation 
CT4I developed by Castro et al. [6]. It uses multiple time grids, one per unit, 
with a number of pre-specified time points |T|, where all tasks span a single time 
interval. Thus, with |T|=|I| we ensure optimality. Binary variables with 4 
indexes, Ni,i’,k,t (with i≠i’), are required to identify the execution of order i in 
stage k at time t, together with the required changeover task for order i’ to 
immediately follow (same stage, next event point). Four other sets of binary 
variables Y1i,k-Y4i,k identify the location of order i in stage k with respect to the 
processing of the same order in stage k+1 (see Figure 1). These are required to 
accurately determine the capacity of the intermediate storage vessel Vi,k. 



Periodic Scheduling of Multiproduct Continuous Plants Using a Multiple Time Grid 
Continuous-time Formulation                3 

Stage k

Stage k+1

11 , =kiY 13 , =kiY 14 , =kiY12 , =kiYActive binary

 

Figure 1. Four different possibilities of task interaction between consecutive stages   

The positive continuous variables ξi,k,t give the amount of material processed, 
while the excess resource variables Ci,k,t refer to the availability of unit k at point 
t at a condition that enables the unit to process order i. Note that the sum over i 
is linked to the availability of the equipment resource. The time of event point t 
belonging to grid k relative to the start of the cycle is given by Tt,k, while H is 
used for the cycle time. Combined tasks starting at time point t unit k end their 
processing at Tpt,k. The start and finishing time of order i in stage k is given by 
Tsi,k and Tfi,k, respectively. To avoid numerical problems, we use ΔTi for the 
processing time of order i in the last stage. Finally, ρi,k holds the processing rate 
and Di the delivery/demand rate of product i. The model constraints are given 
next. A wrap-around operator [8] has been used, so tasks starting at the last 
event point and ending after the cycle boundary can be viewed simply as 
wrapping around to the beginning of the cycle and continuing from there. 
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Eq 2 is the excess resource balance, where combined tasks from order i to i’ 
starting at t consume equipment condition i at t and produce condition i’ at 
Ω(t+1). Eq 3 ensures that the start-up procedure does not use more equipment 
units than those available at the plant. Eq 4 states that the amount of order i 
handled in stage k equals that processed in k+1.Material production for order i 
can only occur if one of its combined tasks is active (eq 5). Eq 6 defines the 
delivery rate Di. Every order is processed only once in each stage (eq 7). Eq 8 
and 11 anchor the schedule [8]. We can enforce all equipment units to be 
occupied at all times (eq 9). Eq 10 is the most important timing constraint, 
where it is assumed that equipment units can be operated below their maximum 
processing rates. Eq 13 forces the time of the last event point in all grids to be 
lower than the time horizon. Eqs 12, 14-17 are big-M constraints relating the 
different timing variables. Eq 18 defines the processing rate and is a nonlinear 
constraint, while eq 19 ensures that it does not exceed its maximum value. Eq 
20 defines the processing times in the last stage, which need to be properly 
bounded to avoid numerical problems with the solvers (eq 21). Eqs 22-27 are 
used to identify the interaction between processing tasks of the same order in 
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consecutive stages (see Figure 1). Based on such variables, the capacity of the 
intermediate storage vessels can be determined (eqs 28-35). Eqs 36 and 37 place 
appropriate bounds on the timing variables where H  and H  are respectively 
the upper and lower bounds on the cycle time. In the optimal solution, the 
processing rates will regularly equal their maximum values, so these are used as 
starting points. Finally, the new MINLP formulation is completed with the 
profit maximization objective function ($/h), eq 38. The first term in the 
numerator gives the revenue due to product sales, while the others give the total 
cost in terms of changeover, intermediate and final inventories, respectively. 

4. Computational results  

The MINLP model was implemented and solved in GAMS build 22.2 using 
DICOPT, with CONOPT as the NLP and CPLEX as the MILP solvers. The 
computer consisted on a Pentium-4 3.4 GHz processor with 2 GB of RAM. The 
performance of the formulation is illustrated through the solution of 7 example 
problems and compared to the MINLP single time grid formulation (STG) 
given in [5]. Most of the data was taken from [7] and is based in examples from 
continuous multiproduct plants for manufacturing lubricants. Table 1 lists the 
results obtained, where the examples gradually increase in size due to an 
increase in either the number of products or stages. Additional increments 
resulted in intractable problems, while STG could not solve Ex4 and Ex7. 
The new formulation leads to the best solution for all but Ex1 and is faster by at 
least one order of magnitude. When compared to STG, it requires fewer event 
points to find the optimal solution (fewer binary variables), without requiring an 
iterative search procedure (recall that |T|=|I|). When compared to the one in [7], 
it is not limited to solutions that feature the same sequence in all stages, and the 
processing rates may be lower than the maximum values. Because of this, for 
Ex1 and Ex3, which match examples in [7], the new formulation obtained 
profits of 352.446 $/h and 6514.49 $/h vs. 297 $/h and 6513 $/h. 
Figure 2 shows the optimal schedule for Ex7, the hardest 3-stage problem, for 
which the optimal product sequence is the same in all stages (ADEBC). Notice 
that stage 2 is the limiting stage since all tasks are performed at the maximum 
rate (100% is the default). Also, note that all orders are more or less being 
produced in the three stages simultaneously in order to reduce inventory 
profiles. All products are at their minimum demand rates except C. 

5. Conclusions 

This paper has presented a new continuous-time formulation for the optimal 
periodic scheduling of multistage continuous plants with a single unit per stage 
and sequence dependent changeovers. It uses multiple time grids where the 
number of event points that achieves optimality can be easily determined and is 
able to calculate the capacity that is required for the intermediate storage 
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vessels. This is a substantial development since the vessels inputs and outputs 
result from equipment units belonging to different time grids that, because of 
that, are difficult to relate. When compared to a some extent similar single time 
grid formulation, the new formulation could find better solutions to all but one 
example problems in significantly less computational time. 
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Table 1. Overview of computational statistics 

   New multiple time grid formulation Single time grid formulation 

Problem |I| |K| Profit ($/h) Binaries CPU (s) Profit ($/h) Binaries CPU (s) 

Ex1 3 2 352.446 48 1.5 355.087 198 33.6 

Ex2 4 2 7099.19 112 3.2 7074.61 288 239 

Ex3 5 2 6514.49 220 287 6397.78 500 7899 

Ex4 7 2 5572.57 616 71598    

Ex5 3 3 5923.90 78 4.9 5789.04 216 111 

Ex6 4 3 5312.76 176 58.3 5166.12 384 1863 

Ex7 5 3 4986.59 340 33284    
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Figure 2. Optimal schedule for Ex7 


