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Abstract 

The dynamics and uncertainty of the business and the market makes difficult to 
coordinate the activities of a supply chain (SC) and its echelons causing 
deviations from previous plans and schedules. Therefore, it is important to 
review systematically and to take into account the variability in the planning 
formulation in order to manage a plant or supply chain efficiently. These actions 
will permit to provide a more agile response to the market changes with more 
accurate decisions, improving by this means the overall performance of the 
business. In the literature, a control oriented decision framework has been 
proposed to carry out the review process. Specifically, model predictive control 
(MPC) is presented as a way to manage SC in the presence of uncertainty by 
incorporating the most recent information of the external market and internal 
business into the planning process. From another standpoint, an additional 
approach presented as a robust manner of decision making under uncertainty is 
solving the planning problem using stochastic optimisation. The main aim of 
this work is to analyse the consequences of implementing a MPC that comprises 
into the control algorithm a stochastic optimisation model. The potential of this 
approach is highlighted through a case study, in which the presented 
methodology is compared to the solely utilisation of MPC. 
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1. Introduction 

Supply Chain Management (SCM) is a challenging problem, since comprise the 
operations synchronization of a structure that includes several interconnected 
components (i.e., suppliers, manufacturing sites, distribution centres) in order to 
maximise financial returns while maintaining a competitive customer service. 
Nowadays to sustain a competitive customer service, the market is requiring 
environmentally friendly products, a good portfolio mixture, fast development 
of new products, high quality and reliability, after sales services, etc. 
Furthermore, SC managers also need to consider the dynamics of this fast- 
changing market environment, such as changes in demand, cancellations, 
returns; and the dynamic of SC internal operations, such as processing times, 
production capacity, availability of materials, among others. With the purpose 
of achieving their goal, SC managers need tools flexible enough to help them 
support the planning decision making process. These tools should be capable to 
account and to systematically review the uncertainty factors during the planning 
process. This work presents an approach to tackle this challenge.  

2. Problem Statement and background 

In literature, a well-known approach to 
overcome the problem of planning 
under uncertainty is MPC. MPC is a 
control strategy based on the explicit 
use of a process model to predict the 
process output over a long-range period 
of time1. The model attempts to predict 
the control variables for a set of time 
periods. Predicted control variables depend on a set of given parameters that are 
known in the control literature as control input. The MPC algorithm tries to 
optimise a performance criterion that is a function of the future control 
variables. By solving the optimising problem all elements of the control signal 
are defined. However, only a portion of the control signal is applied to the 
system. At next period of time, as new control input information is collected, 
the whole procedure is repeated as illustrated in figure 1. 
On the other hand, Stochastic Programming (SP) is a framework for modelling 
optimisation problems that involve uncertainty. SP models assume that 
probability distributions governing the uncertain factors are known or can be 
estimated. The aforementioned fact and the computational effort required to 
obtain solutions are the main drawbacks of this approach. Its goal is to find a 
solution that is feasible for all the possible data scenarios and that maximises 
the expectation of a performance indicator. Discrete scenarios can be used to 
describe how uncertain parameters might play out in the future. The most 
widely applied SP models are two-stage programs. In this kind of models, the 

 
Figure 1: Simplified schematic of MPC 
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decision maker takes some action in the first stage, after which a random event 
occurs affecting the outcome of the first-stage decision. A recourse decision can 
then be made in the second stage that compensates for any bad effects that 
might have been experienced as a result of the first-stage decision. 
The authors considered that a more robust tool to deal with planning/scheduling 
under uncertainty can be devised by merging the aforementioned two strategies 
and that is the aim of this work. With the recent advances in optimisation 
theory, software applications and hardware capacity, there is an appealing 
scenario to make this effort.   

3. Paper approach  

The present work proposes a general framework for SC planning/scheduling 
based on the inclusion of a two-stage stochastic MILP model within the control 
algorithm of a MPC. The control input considered under uncertainty is market 
demand. In order to predict demand and to have a support to generate the 
scenarios required by the SP model, a forecasting tool has been utilised.  

3.1. Joint  framework strategy formulation 

In figure 2, a general schematic of the joint control framework (JCF) proposed 
for SCM is shown. Next, each of the control strategy elements is briefly 
explained.  

3.1.1. Forecasting module 

The parameters that the proposed control strategy requires from a forecasting 
module are 1) estimates of demand mean (d(t)) and 2) Forecast Error (FE) 
distributions.  

 
Figure 2: Schematic of joint MPC – stochastic optimisation proposed framework for SCM 
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The FE distributions depend on previous errors (e(t)) and how many periods 
ahead the forecast is being done. If the correct forecasting model has been 
chosen, and if the statistical procedure used to estimate parameters in the model 
yields unbiased estimates, then the expected FE will be zero2. When the FE (ε) 
is assumed to be normally distributed (N(0,σe)),σe of the single-period ahead FE 
can be calculated by means of equation (1).  

( )
1.25 t

e

e t

N
σ ≈

∑
 (1) 

This approximation holds well even for non-normal errors2. For more details 
about FE estimation please refer to Montgomery and Johnson2. Finally, future 
market demand in period t (D(t)) can be expressed as depicted in equation (2).  

( ) ( ) ( )D t d t tε= +  (2) 

Therefore, a Monte Carlo sampling to generate ε(t) assuming that this parameter 
is governed by a N(0,σe) probability distribution and equation (2) can be utilised 
to create the demand scenarios needed in stochastic mathematical models. 

3.1.2. Control algorithm 

In the suggested strategy, the control algorithm corresponds to a stochastic SC 
planning/scheduling model. Currently, there is a big amount of deterministic 
and stochastic approaches available in the literature to model and optimise the 
SC planning. Here, the deterministic State-Task-Network (STN) based 
formulation presented by Guillén et al.3 has been transformed into a stochastic 
formulation in order to be applied as the control algorithm. This formulation 
uses a time representation that allows addressing the integrated planning-
scheduling of SC with embedded multipurpose batch chemical plants.  
The integrated planning-scheduling formulation. The formulation is divided in 
two phases: detailed scheduling and production planning. In first phase, the 
detailed schedules of the sites of the SC as well as the transport decisions are 
optimised. At the production planning phase, neither the exact sequence of 
batches produced nor the initial and finishing times of the involved tasks are 
calculated within every period, but estimations by means of an aggregated STN 
representation are made. Three types of constraints are considered within both 
phases: the assignment, the mass balance and the capacity constraints. 
The model proposed by Guillén et al.3 divides the planning and scheduling 
horizon into periods of length H1 where production is planned. The periods 
where detailed scheduling is carried out are divided into time intervals of lower 
length H2 as shown in figure 3. Here, it has been defined detailed scheduling 
horizon equal to two planning periods to prevent problems in resources 
availability at subsequent detailed scheduling time intervals. This problem can 
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appear when using the aggregated model due to the approximations made by 
this formulation. 

The stochastic program. The decisions 
and constraints of the system are 
classified into two sets. The first-stage 
variables, also known as ‘here and now’ 
variables, are determined prior to the 
resolution of the underlying demand 
uncertainty4. In the model proposed, the 
first stage variables are included in the 
detailed scheduling formulation as 

shown in figure 3. The first stage variables are task assignment to units, batch 
sizes, materials and utilities purchases. As a contingent on these ‘here-and-now’ 
decisions and the realizations of the uncertain demand, the second-stage 
variables are determined to optimise in the face of uncertainty4. In this work, the 
second stage variables are included in both, the detailed scheduling and 
production planning formulation. Sales and inventories are second stage 
variables in the total detailed scheduling horizon (t=0 y t=1). Task assignment 
to units, batch sizes, materials and utilities purchases are second stage variables 
only in the last part of detailed scheduling horizon (t=1). All variables included 
in the production planning formulation belong to the second stage.  
Control signal. As shown in figure 2, just ‘here-and-now’ decisions resulting 
from the stochastic optimisation problem are applied to SC system. The whole 
strategy is repeated every planning period (H1), as demand information is 
updated and treated by the forecasting module. 

3.2. Case study  

The capabilities of the proposed approach are 
highlighted by solving a problem of a SC 
comprising 3 DC, 6 markets and 2 plants that 
can manufacture 2 products. The structure of the 
SC has been taken from the case study presented 
by Guillén et al.3 Please refer to this work so as 
to examine the STN representation of the SC. 
The detailed scheduling horizon has a length 
equal to 16 hours (2 days). The control strategy 
horizon is equal to 5 days and attempts to 
optimise the NPV. The control strategy is 
repeated every day. The implementation in GAMS of the integrated control 
algorithm model leads to a MILP model with 673,023 equations, 145,579 
continuous variables, and 26,785 discrete variables. It takes an average of 343 
CPU seconds to reach a solution with 5% integrality gap on an AMD Athlon 
3000 computer using CPLEX. 

Figure 3: Model time representation 

 
Figure 4: NPV cumulative 
probability distribution for first 
planning period 
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3.2.1. Results 

Numerical results show that the proposed JCF 
is a more robust strategy. As illustrated by fig. 
4, NPV variability due to demand uncertainty 
is reduced by applying the JCF. For instance, 
probability of achieving a NPV lower than 
500,000 m.u. is shown to be merely 10% in 
the JCF case and 100% when carrying out 
MPC approach. Fig. 5 shows NPV behaviour 
of both control algorithms during fifteen 
planning periods. By using the MPC, the SC 
system yields a NPV equal to 4,491,539.88 
m.u., whereas by using the JFC 8213029.40 
m.u. are accomplished. The case study 
demonstrates, perhaps not surprisingly, that 
significant benefits are obtained when 
merging the advantages of MPC and SP on an 
integrated approach.   

4. Conclusions and future work 

The main contribution of this work is that presents a novel approach for 
controlling and reviewing the SC plans to take into account the most recent 
information from market and operations environment. The novel joint 
framework consists of a MPC that comprises a SP into the control algorithm. 
Future work will be focus on devising how risk management features and 
decentralised policies can be taken in consideration within the control strategy 
proposed.  
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