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Abstract 

In this work, we present a new algorithm for solving complex multi-stage 
optimisation problems involving hard constraints and uncertainties, based on 
dynamic and multi-parametric programming. Each echelon of the dynamic 
programming procedure, typically employed in the context of multi-stage 
optimisation models, is interpreted as a robust multi-parametric optimisation 
problem, with the present states and future decision variables being the 
parameters, while the present decisions the corresponding optimisation 
variables. This reformulation significantly reduces the dimension of the original 
problem, essentially to a set of lower dimensional multi-parametric programs, 
which are sequentially solved. Furthermore, the use of sensitivity analysis 
circumvents non-convexities that naturally arise in constrained dynamic 
programming problems. The application of the proposed novel framework to 
robust constrained optimal control is highlighted. 
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1. Introduction 

Multi-stage decision processes have attracted considerable attention in the open 
literature. With many applications in engineering, economics and finances, 



2  N.P. Faísca et al. 

theory and algorithms for multi-stage decision problems have been broadly 
presented [1,2]. A typical multi-stage optimisation problem, involving a 
discrete-time model and a convex stage-additive cost function, can be posed as 
follows [2,3]: 

xk+1 = fk(xk,uk), xk ∈ X, uk ∈ Uk, k ∈ {0,1, …, N-1}, (1a) 
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where, k indexes discrete time, xk is the state of the system at time k, X ⊆ IRn, uk 
denotes the optimisation (control) variable at time k, U ≡ {u0, u1, …, uN-1}, U ⊆  
IRm, fk describes the dynamic behaviour of the system and gk is the cost 
occurred at time k. Based on a sequence of stage-wise optimal decisions, the 
system transforms from its original state, x0, into a final state, xN. The set of 
optimal decisions, {u0

*, u1
*, …, uN-1

*}, and the corresponding path, {x1
*, 

x2
*,…,xN

*}, optimise a pre-assigned cost function (1b). In other words, if the 
sequence of decisions is optimal the reward is maximum. 
 Dynamic Programming is well-documented [1] as being a powerful tool 
to solve this class of optimisation problems. Based on the optimality principle, 
the original problem disassembles into a set of problems of lower 
dimensionality, thereby reducing the complexity of obtaining the solution. The 
value function for a general multi-stage optimisation problem, as in (1), is given 
by: 
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where ui = μi (xi) ∈ Ui, and μi (.) is an admissible policy. Applying the 
optimality principle to Equation (2) results in the following recursive 
equation[3]: 
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 From (3) we conclude that incumbent cost functions are a compound of 
all future cost functions, previously optimised, and the cost corresponding to the 
decision taken at the present time. Bellman [1] proved that this methodology 
solves the original problem to global optimality. The obvious advantage is that 
at each time step/stage the decision maker just takes one decision, provided that 
all future stages are optimised up to the incumbent stage. 
 Although dynamic programming is a well-established methodology, a 
number of limitations can be identified. For instance, in the linear-quadratic 
regulator control problem, dynamic programming procedure results in: u0 = K0 
x0; u1 = K1 x1; … ; uN-1 = KN-1 xN-1, where the control action is set to be 
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admissible, uk ∈ Uk.  However, if the problem has hard constraints the 
complexity of the implementation significantly increases, mainly because 
optimisation over hard constraints directly results in non-linear decision laws 
\cite{raw1999}. Therefore, whereas the inclusion of future linear control laws 
in the incumbent cost function may not result in an increase of complexity, the 
inclusion of non-linear control laws in the incumbent cost function, even if 
convex, may require specialised global optimisation techniques for its solution. 
Borrelli et al. [5] presented an attempt to solve the hard constrained multi-stage 
problem in a dynamic programming fashion. Based on multi-parametric 
programming theory [6] and on Bellman's optimality principle, the authors 
compute, for each stage, the corresponding control law, uk =μk (xk), using multi-
parametric programming algorithms [6,7]. The key idea is to incorporate this 
conditional piecewise linear function in the cost function of the previous stage, 
reducing it to a function of only the incumbent stage variables, uk-1 and xk-1. 
However, as the objective function at each stage is a piecewise quadratic 
function of {xk, uk} overlapping critical regions result, and a parametric global 
optimisation procedure is thus required to obtain the explicit solution.  
In this work, we present a novel algorithm for the solution of constrained 
dynamic programs which effectively avoids the need for any global 
optimisation procedure. The algorithm combines the principles of multi-
parametric programming [6] and dynamic programming, and can readily be 
extended to handle uncertainty in the model data [8-10], as described next. 

2. Methodology 

The main steps of our approach are summarised in Figure 1 [6]. Here, we will 
illustrate in detail how the algorithm can be applied in the context of robust 
optimal control, by revisiting a popular control example problem [11]: 
 

Figure 1. Dynamic programming via multi-parametric programming  
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                             (4) 
 
 
 
 

where, xk ∈ IR2, uk ∈ IR, 

We also assume unknown but bounded uncertainty in the data of matrices A,B 
of the dynamic model as follows: { ||||; 1111 AAAAAA εδεδ ≤≤−+= } and 
{ ||||; 1111 BBBBBB εδεδ ≤≤−+= }. Due to the presence of uncertainty, 
another step is required prior to the algorithm in Figure 1. 
 
Step 0. For the linear model and path constraints, (4), the following constraints 
are introduced, as suggested in [8,9], to obtain a solution immune to 
uncertainty: 

 
 
 
 
 
 
 

or, by setting δ =0, i.e., we do not allow any constraint relaxation, the following 
robust optimal control formulation results: 

 

 

 

 

 

We are now ready to execute the remaining steps of the algorithm in Figure 1; 
Step 1.  Third stage – Recast the third stage optimisation problem as a multi-
parametric programming program with x2 being the parameters: 
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A suitable multi-parametric programming algorithm [7] can be used to obtain its 
solution, resulting in the decision law: (u2,ω2,y2)=f(x2), which comprises 12 
critical regions; 
Step 2. Incorporating the model information, xk+1 = A xk + B uk, (for x2), in each 
critical region. For instance, in critical region #8: 
 
 
 
 
 
 
 
 
 
 
Step 3. Second stage – Recast the second stage optimisation problem as a multi-
parametric programming problem, with x1 and u2 being the parameters: 
 
 
 
 
 
 
The solution of (14) can be obtained by multi-parametric programming, 
resulting in explicit expressions, u1 = f(x1,u2), in 22 critical regions;  
Step 4. We then incorporate the future decisions, (u2,ω2,y2)=f(x1, x1), in the 
current decisions, u1 = f(x1,u2), by which we obtain expressions: u1 = f(x1). Note 
that we need to incorporate the 12 regions obtained in Step 2 in each one of the 
22 regions obtained in Step 3, i.e. we generate 264 critical regions. Feasibility 
tests are performed here [6], with which infeasible critical regions are 
eliminated and a compact set of regions is obtained, resulting in only 80 regions 
to examine further. Constraints belonging to future stages are not considered, as 
future constraints satisfaction is implicitly guaranteed by definition of the 
present map of critical regions. Hence, the use of a global optimisation 
procedure is not required; 
Step 5. First stage – Similarly, we can obtain the final map of critical regions, 
i.e. all feasible solutions involving 464 critical regions. Each critical region 
corresponds to a different policy, however, many regions may have the same 
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identical first-stage optimal decision, u0. In the example above, only 20 different 
first-stage optimal decisions were identified(i.e. a potential reduction over 
95%). The implication of this in a closed-loop robust control implementation 
strategy, where only the first-stage decisions are updated, is that a very 
significant reduction of the number of critical regions (control laws) can take 
place, by merging the adjacent regions with identical first-stage control actions.  

3. Concluding remarks 

We presented an outline of the main steps of a novel multi-parametric 
programming approach for the solution of general, constrained convex multi-
stage problems involving uncertainty. Through a literature example of optimal 
control problems, we highlighted how: (i) we can reformulate the original multi-
stage optimal control problem involving polytopic uncertainties into its robust 
equivalent, while preserving the original model structure and features, (ii) we 
can use recently proposed multi-parametric programming theory and algorithms 
[6] to efficiently address constrained dynamic programming procedures, used in 
the context of multi-stage optimal control formulations, (iii) we can avoid any 
need for global optimisation methods by carefully posing and conducting 
feasibility tests, based on sensitivity analysis of the obtained parametric 
solutions. Whilst the details of the proposed theory will be described in a 
subsequent publication, the work presented here clearly establishes the 
foundations towards a comprehensive general theory for robust optimal control. 
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