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Abstract 

Supply chain redesign involves decisions regarding the timing, amount and 
location attributes of the investment and disinvestment in facilities, production, 
purchase of raw materials, sale of products, loans and bonds for raising capital, 
signing of contracts for material purchase and sales, such that the profit is 
maximized. In this work, we use genetic algorithm to obtain the supply chain 
redesign plan while maximizing the profit. Genetic algorithms (GA) are best 
suited for unconstrained problems and we present a novel formulation of the 
supply chain redesign problem in an unconstrained fashion. To demonstrate this 
new and unconstrained formulation, we solve the problem which we previously 
presented (Naraharisetti et al., 2006), where we developed a novel MILP model 
for supply chain redesign and solved it using Cplex. 
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1. Introduction 

With the advent of globalization, new markets are opening up in various parts of 
the world and organizations are venturing into these markets in order to exploit 
new opportunities and maximize the share holder value. One way to achieve 
this is through efficient asset management of their supply chains. The assets in 
the supply chain include the production and inventory holding facilities, raw 
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materials and products in inventory, technological know-how and financial 
assets such as, capital from loans and bonds and contracts for material supply. 
Organizations invest in potential profit-making assets and disinvest assets that 
are yielding reduced profits. While doing this, they must also consider various 
issues such as the logistics costs, the regulatory factors on import and export at 
the current and new locations, among others. Hence, a mathematical model that 
considers these issues and gives a plan such that the share holder value is 
maximized is of utmost importance to the industry and has not been addresses 
in the literature. 

2. Background 

We previously presented (Naraharisetti et al., 2006) an MILP model considering 
such issues as investment, disinvestment, relocation, regulatory factors, 
transportation cost, contracts for strategic material supply, and loans and bonds 
for raising capital, among others. To the best of our knowledge, we were the 
first to consider the issues of disinvestment, relocation and contracts for 
strategic material supply. This model was implemented in GAMS 21.7 and 
solved using Cplex 9.0 to a gap of 9% in 24 hrs. It can be seen that the 
computational time is large for an academic example. Considering the size of 
the problems in the industry, an MILP model may not be able to give a feasible 
solution in reasonable computational time. Hence, it is important that we seek 
alternative optimization techniques. However, genetic algorithms have been 
primarily designed to handle unconstrained problems. Hence, a reformulation of 
the model is required because the problem under consideration is heavily 
constrained.  

3. Genetic Algorithms for constrained problems  

Considering the large number of constraints involved in our model, the 
crossover and mutation operations often generate infeasible strings.  There are 
several methods of handling these infeasibilities and some of them are to: a.) 
reject infeasible strings, b.) penalize objective value when infeasible strings are 
generated, c.) repair the infeasible strings and d.) generate strings such that they 
are always feasible. The strategies of rejecting the infeasible strings or 
penalizing the objective function perform poorly because the given problem is 
heavily constrained. We worked on a strategy which is based on generating 
most of the decision variables in a string in the feasible region and repairing the 
infeasibilities in the others, which is partially similar to Michalewicz and 
Janikow, 1991. In their work, they handle the constraints by generating the 
decision variables in the feasible region. This is achieved by modifying the GA 
from case to case. In our strategy, we would only need to write the evaluation 
function from case to case and the GA remains the same. In this paper, we will 
elaborate on this new and innovative way of remodelling a heavily constrained 
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problem and highlight the relative advantages and disadvantages of solving an 
MILP model directly in GAMS vis-à-vis by solving the MILP with the aid of 
GA.  

3.1. Reformulation of MILP  

While modeling the supply chain redesign problem as an MILP, the binary 
variables for the strategic part of the problem are 1.) plant expands, 2.) plant is 
disinvested, and 3.) technology upgrade takes place. In addition, we use 0–1  
continuous variables to represent whether a.) plant exists, and b.) plant existed 
in the past and is currently disinvested. Since the horizon is divided into H 
number of predetermined time periods in an MILP,  3H binary variables and 2H 
continuous variables are required for each facility. In the reformulation, the 0-1 
continuous variables can be replaced by two variables a.) time at which the 
plant begins to exist, and b.) the duration for which a plant exists. Similarly, 
technology upgrade can be represented by just one variable i.e., time at which 
the technology upgrade occurs, instead of the H binary variables used in MILP. 
Also, we use ‘n’ variables to define the number of expansions allowed at a 
given facility and another ‘n’ variables to define if the nth expansion at the 
facility occurs. Hence, we will only have 2n variables instead of H variables to 
model capacity expansions for a given facility. It can thus be seen that 3H 
binary variables and 2H continuous variables are represented by 3 + 2n 
variables in the reformulation. Since, the number of expansions allowed is 
usually about 3 or 4 in the planning horizon, the total number of variables in the 
reformulation would be only about 9 to 11 for a given facility. This is far less 
than the 120 (H=40) binary variables and 80 continuous (0–1) variables 
required in an MILP. The 9 variables can then be decoded to a feasible set of 
binary and continuous variables using a decoding procedure. The binary and 
continuous variables thus obtained are then passed to the MILP solver, where 
these are fixed and the smaller MILP (tactical decisions are still in MILP) is 
solved to a gap of 1% and the objective is passed to the GA. The 0–1 
continuous variables and binary variables are constrained due to the 
construction lead time, assumption that a facility once disinvested cannot be 
purchased back, the limit on the number of times a facility expands, and limits 
on technology upgrade. It can thus be seen that the 0–1 continuous variables and 
binary variables which are constrained in the MILP, are modelled in an 
unconstrained fashion by this reformulation in GA. In our work, we use GAMS-
Cplex as the MILP solver and implement GA in Matlab. The MILP model is 
solved using Cplex 9.0 in GAMS 21.7 on a Windows XP based HP workstation 
with an Intel Xeon (Dual) 3.6 GHz processor and the GA is implemented in 
Matlab 7.0.1. The strategy is shown in Fig. 1.  
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3.2. Case study 

We consider a multi-echelon supply chain network consisting of two material 
suppliers who supply five raw materials and one intermediate, four production 
facilities (three existing and one future possible) producing one intermediate 
and five products, and five distribution centers (three existing and two future 
possible). In addition, each production facility has two input inventory holding 
facilities and two output inventory holding facilities. The production facility 
that can potentially be disinvested  and the facility that can be newly invested in 
are in two different nations. Hence, the problem can be considered to be that of 
relocation from one nation to another. The features that we include in our model 
are inflation, depreciation, regulatory factors, contracts for material supply, 
loans and bonds for raising capital for investments, possibility of a shutdown for 
maintenance or when there is no raw material, among others. To solve this 
problem, we consider a planning horizion of ten years divided into forty time 

 MILP MILP+GA 

Binary  
Variables 2220 

400 in MILP 
1820 from GA 
(Chromosome  
length = 183+1) 

0–1 continuous  
variables 

2160 
 

2040 from GA 
 

Constraints 26,390 
 

26,390 
 

Variables 18,134 
 

18,134 
 

Non-zeros 103,302 
 

103,302 
 

CPU time (hrs) 24 
96 (13-15s for  
each reduced  
MILP) 

NPV ($ bn) 8.31 7.93 
Gap 9% 11% 

Table 1. (above) Computational statistics for full MILP 
model in GAMS and the MILP+GA strategy.  
 
Figure 1. (left) Illustration of the strategy of obtaining 
important decision variables from GA in Matlab and 
obtaining the objective by solving an MILP with fewer 
binary variables in GAMS. 
 
**The GAMS-Matlab interfacing by Ferris, 1998. 
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periods and worked on a discrete time formulation. The computational statistics 
are presented in Table 1. 

3.3. Results & discussion 

The MILP model implemented in GAMS had 2220 binary variables. The same 
implementation when done in GA enables the division of the set of the binary 
variables into strategic (1820) and tactical (400) binary variables. The strategic 
binary variables are obtained from the GA and the tactical binary variables are 
left in the MILP. The strategic binary variables are constrained and hence a 
reformulation of these constraints is required so that the GA produces only 
feasible set of the binary variables. The reformulation results in only 183 
variables and this reduction in the number of variables has great potential in 
reducing the computational time. In addition to the 1820 binary variables, 2040 
out of the 2160 continuous (0–1) variables are also obtained from the GA and 
fixed in GAMS. This leads to a small computational time of about 15s to reach 
a gap of 1% for the reduced MILP.  
 
Table 2. Comparison of the capacity (Ktons/quarter) profiles obtained by the complete MILP with 
the best solution of GA-reduced MILP (PF-production facility). TU-technology upgrade.  
 Capacity (period) from GAMS  

 (TU of PF1=31) 
Capacity (period) from GA-GAMS  
 (TU of PF1 at 33) 

PF1 6000(1-9); 8000(10-25);  
12900(26-40)  

6000(1-11); 8000(12-32);  
12500(33-40) 

PF2 6000(1-7); 0(8-40) 6000(1-10); 0(11-40) 
PF3 6000(1-8); 12510(9-31);  

15220(32-40) 
6000(1-9); 11330(10-32);  
13330(33-40) 

PF4 0(1-8); 7970(9-31);  
14175(32-40) 

0(1-10); 8000(11-40) 

 
The capacity profiles of the production facilities for the solution obtained from 
GAMS and those obtained by GA-GAMS  (the best plan) are given in Table 2. 
Furthermore, Table 3 shows the comparison of two more chrosomes from the 
population in GA. It can be seen that the primary differences between the two 
profiles are the time at which the technology upgrade takes place and the times 
at which the expansions occur. However, it is interesting to note that in both the 
cases the capacities of the production facilities are similar for PF1 and PF2. PF3 
manufactures an intermediate and a product. This intermediate is used as raw 
material by PF2 and PF4. A new chromosome should at the same time give 
expansions at both PF3 and PF4, else it will result in a lower profit. To obtain a 
solution as good as GAMS, the child chromosome should be produced such that 
the entire set of decisions would give a good objective. Since the problem is 
constrained and there are flows of intermediate materials in a chemical supply 
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chain network, it probably would not be possible to obtain a better solution than 
GAMS. However, GA has the potential to fare better when the size of the 
problem is too big for a full scale MILP. The full MILP can be solved by a 
decomposition procedure when the problem is large and we intend to pursue it 
as future work and compare it with GA.  
 
Table 3. Comparison of the capacity (Ktons/quarter) profiles of the solutions (ranked 2 and 3; 
rank 1 is presented in table 2) obtained by the GA-reduced MILP (PF-production facility). 
NPV  
($ bn) 

Capacity 
(period) 
PF1 

Capacity 
(period) 
PF2 

Capacity 
(period) 
PF3 

Capacity 
(period) 
PF4 

7.56  
(TU of 
PF1=33) 

6000(1-11) 
8000(12-32) 
12500(33-40) 

6000(1-10) 
0(11-40) 

6000(1-9) 
11330(10-32) 
13330(33-40) 

0(1-10) 
8250(11-40) 

7.52 
(TU of 
PF1=33) 

6000(1-11) 
8000(12-32) 
12500(33-40) 

6000(1-15) 
0(16-40) 

6000(1-9) 
11330(10-32) 
13330(33-40) 

0(1-12) 
7700(13-40) 

4. Conclusions 

We have developed a novel reformulation of the constraints that involve the 
binary and 0–1 continuous variables and have used GA in conjunction with 
GAMS to obtain a population of good solutions for the supply chain redesign 
problem. It can be seen that by using this novel reformulation, we are able to 
achieve objective values >96% of that achieved by solving the complete MILP 
in GAMS. Even though the objective value is lower, we obtained a population 
of solutions which can further be analyzed. It is observed that the network 
structure for all the members in the population is similar and their objectives are 
different because of small differences in the time at which capacities expand or 
relocate. Hence, a direct inference would be the low sensitivity of the objective 
value to the changes in implementing the decisions. 
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