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Abstract 

This paper presents a general framework to handle the optimal sizing of single-
stage multi-product units incorporating demand uncertainty. This problem 
consists on the determination of the type, number of units and their capacities, 
chosen from a set of standard equipment sizes. The objective function is the 
profit expectation maximization, involving five components: i. revenue; ii. 
production cost; iii. equipment depreciation cost; iv. storage cost; v. cost due to 
non fulfillment of the demand target. The multiple dimension integral 
representation of the expectation is approximated through cubature formulae. 
With linear process models, an overall MILP problem formulation is obtained. 
The approach is applied to the design of the furnace section of a ceramic tile 
industrial plant, where different products are obtained. 
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1. Introduction 

A large number of process industries involve a complex network of factors. 
Quite often the market dynamics significantly influence the overall product mix 
and their corresponding service levels. Optimal process design for these 
situations must explicitly incorporate the demand uncertainty, giving rise to 
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process design problems under uncertainty. Three different types of strategies 
are found in literature, to address these problems: a. the scenario-based 
approach, in which the uncertainty is represented by a set of scenarios [1]; b. the 
parametric-based approach, characterized by parametrical solution of the 
optimization problem over the domain of uncertainty [1]; c. the stochastic-based 
approach, in which the uncertainties are described by probability functions, and 
sampling procedures [2] or integration formulae [3] are used to approximate the 
expectation operators. For a detailed analysis of stochastic optimization see the 
review of Sahinidis [4]. Stochastic features have been incorporated into several 
types of Chemical Engineering problems ranging from process scheduling to 
process design, capacity expansion and supply chain optimization. Here we 
introduce a stochastic-based approach for sizing the equipment that should be 
installed in multiproduct plants, where the demand of the product mix is subject 
to uncertainty. The aim is to determine the type and number of such units, their 
capacities and the corresponding operation plan, through maximization of the 
profit expectation. 

2. General Formulation 

The basic assumptions for the formulation given below are: i. The process 
diagram has just one processing stage. ii. Only one time period is considered in 
the economic evalutation of the profit obtained. iii. Uncertainty is considered in 
the demand levels for each product, but not on the corresponding prices. iv. The 
distribution functions are assumed to be independent for each parameter. Rather 
than fundamental assumptions, these hypotheses are made essentially for 
simplicity of the resulting mathematical model. 
We denote by },...,1{ nN ∈  the set of possible equipment options that can be 
allocated, and },...,1{ pP∈  the set of existing products. The major discrete 
decision variables are },{ Njyy j ∈≡ , where }1,0{∈jy  describes the 
allocation of units of type j . The continuous variables are },{ Pixx i ∈≡ , the 
production level for each product, and },{ Piss i ∈≡ , the quantity sold of each 
product. Model parameters are },{ Njvv j ∈≡ , the capacity factors for each 
possible type of equipment, and },{ Pii ∈≡ θθ , the demand level for each 
product. It is assumed that each iθ  is uncertain and modeled by a probability 
distribution function (PDF) ( )iJ θ . Additional variables in the model are 

},{ Piaa i ∈≡  the amount of product i  overprocessed, and },{ Pibb i ∈≡ , the 
demand not met for product i . These are both positive or null quantities defined 
by },0max{ iii xa θ−=  and },0max{ iii xb −= θ . The objective function is 
represented by ( ) ( ) ( ) ( )θθθθ bsdo CCCCSL −−−−=  where the revenue term 
is represented by ( )θS , the operation cost by oC , the equipment depreciation 
cost by dC , the storage cost as ( )θsC , and the cost of producing below the 
demand and subsequently breaking the contracts with the customers as ( )θbC . 
Given the above definitions, the objective function is given as: 
 



Optimal sizing of production units for goods subject to stochastic demand           3 

∑
∈

=
Pi

ii srS , ∑
∈

=
Pi

ioio xcC , ∑
∈

=
Nj

jdjd ycC , ∑
∈

=
Pi

isis acC , ∑
∈

=
Pi

ibib bcC (1) 

 
where ir , oic , djc , sic and bic  are the corresponding cost coefficients. 
To model the over/under production scenarios, a set of discrete variables 

}1,0{∈iz  is introduced. If product i  is overproduced )0( >− iix θ  then 1=iz , 
if it is underproduced )0( <− iix θ  then 0=iz ; if iix θ= , iz  can assume any 
of the previous values. We also define iii xl θ−= , a real variable that 
represents the level of production of product i . To relate il  with iz  we add to 
the formulation the set of constraints iii MzlzM ≤≤− )1( . The formulation then 
takes the form: 

( ) ( ) ( )[ ] ( )[ ]θθθθ θθ LECCCCSE bsdo
zyxs

maxmax
,,,

=−−−−   (2.a) 

s.t. ( ) 0,,, =θvyxh ,       (2.b) 
 ( ) 0,,, ≤θvyxg        (2.c) 
 θ−= xl ,       (2.d) 
 iii MzlzM ≤≤− )1(       (2.e) 
 },0max{ iii xa θ−= ,      (2.f) 
 },0max{ iii xb −= θ       (2.g) 
 },min{ iii xs θ=       (2.h) 
 0, ≥xs ,  }1,0{, ∈ij zy  
where θE  stands for the expectation operator. In Equations (2.b) and (2.c) the 
functions ( )•h  and ( )•g  are sets of equalities and inequalities modeling the 
process operation, including feasible operating levels. The expectation is 
represented by the p-dimension integral: 
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p
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This formulation exploits the concept of robustness applied to process design, 
since it enables to produce more than the demand requirement with penalties 
arising in the form of storage costs. Production below the demand is also 
possible, with penalties due to contract unfulfillment and subsequent impact on 
the organization image. This approach is related with the multiobjective 
framework proposed by Goyal and Ierapetritou [5], that introduces a constraint 
to model customers satisfaction in case the target demand are met. The integral 
(7) is calculated employing cubature formulae based on the rules of Stroud [7], 
already used by Bernardo et al. with the same purpose [3], since they proved to 
be more accurate than the best sampling algorithms, namely the Hamersley 
sequence sampling introduced by Diwekar and Kalagnanam [8]. 
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The evaluation of equations (4) and (5) can be simplified, noting that the 
variables ia , ib  and is  are only used in the objective function, and appear in 
sumations of negative and positive terms, respectively. For instance, the 
definition of ia  in equation (4) can be replaced by the set of inequalities 
 

ii Mza ≤ , iii xa θ−≥ , 0≥ia , with ∑
∈

=
Pi

isis aCC    (4) 
 
since the term with sC is negative in the objective. Similarly for ib , we have 
 

)1( ii zMb −≤ , iii xb −≥θ , 0≥ib , with ∑
∈

=
Pi

ibib bCC    (5) 
where M is an upper bound on the quantities produced. Alternative 
formulations to produce tighter relaxations of the constraints involving M  
could also be used [10, 11], although they were not found necessary in the 
examples considered. Finally for is , we need to consider both the situations 
where the demand is met and not. Since we are maximizing the objective, the 
sales term )(θS  can be computed by (1), with the constraints (6) added to the 
formulation. 
 

ii xs ≤ , iis θ≤         (6) 
 
This set of constraints allows an easier evaluation of the formulation given 
above. The problem so formulated originates an MILP, if the model equations 
and constraints (3) have a linear form. 

3. Application 

The framework introduced in section 2 is applied to the design of the furnaces 
section of a continuous ceramic tile production unit. The aim is to determine the 
number of furnace units to install, their dimension, and the optimal production 
plans for a set of discrete scenarios derived from cubature points used in 
integral calculation of the profit expectation in the domain θ . The unit produces 
three types of tiles with different dimensions but all of square form. Table 1 lists 
the product mix, prices, costs and demand features. The storage cost is due 
warehouse space, and the operation cost accounts for the cost of producing one 
square meter of tile. Since the heat required to process all types of tiles is equal, 
the operation cost is 9.08 €/m2 for all products, and the storage cost is 0.501 
€/m2.week, independent on the characteristics of the units to install. The 
uncertainty of demand of each product is modeled by independent normal 
distributions captured from the market. 
The furnaces available in the market are of discrete length and width, and it is 
possible to choose any combination of sizes listed in Table 2. The depreciation 
cost is established assuming that the equipment has a life time of 9.5 years [9]. 
The process model is presented as following: 
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where },...,1{ 11 nN ∈  is the set of lengths of furnaces, },...,1{ 22 nN ∈  the set of 
widths, },{ 2Njww j ∈≡  the furnace width, },{ 1Nkrr k ∈≡  the furnace length, 

},{ Piazaz i ∈≡  the size of tiles, },...,1{ tT ∈  the set of discretization points, 
},,,,,{ 213,,,, TtPiNjNkNmlijkm ∈∈∈∈∈Π≡Π  the productions in each unit, 

},,,,,{ 213,,,, TtPiNjNkNmlijkm ∈∈∈∈∈≡ ςς  the fraction of time used to 
produce each product in each unit, },,,{ 21,, PiNjNkijk ∈∈∈≡ ππ  the 
production capacity of each unit, },...,1{ 33 nN ∈  the set of units with the same 
dimensions, },,{ , TtPiti ∈∈≡ αα  the production level, designated in the 
general formulation as Pixi ∈, , ⎣ ⎦•  stands for the floor (int) operator, ε  for  
the distance between furnace walls and tile, and τ  stands for the time each 
square meter of tile is inside the furnaces (0.83 h) independently on the length 
of the furnaces, causing the velocity of displacement inside furnaces of different 
lengths to be different.  
Table 1. Products, prices, costs and demand representation. 

  Price and costs (€/m2) Demand Uncertainty 
Product Dimension (cm) r  bC  (m2/week) 

1 20×20 12.0 12.15 N(2400,100)* 
2 31×31 15.0 15.15 N(2500,100) 
3 50×50 20.0 20.15 N(1600,50) 

 * ( )σμ,N - normal distribution with average μ  and standard deviation σ . 

Table 2. Furnace sizes in the market and depreciation cost (€/week). 
 Length (m) 
Width (m) 65 70 80 90 

1.6 397 416 452 502 
1.8 434 448 502 548 

 
The expectation integral is evaluated based on 4 points in each dimension that 
leads to a full grid comprising 64 points. The optimization problem comprising 
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8328 equations and 10650 variables is solved with GAMS/CPLEX to a relative 
tolerance of 10-6. The optimal solution is presented in Table 3, requiring 2.47 
CPU s in a Windows XP Pentium IV based platform, and leading to a revenue 
of 32,922 € per week.  
 
Table 3. Optimal solution (number of units). 

Furnaces Furnaces length (m) 
width (m) 65 70 80 90 

1.6 - - - - 
1.8 1 - - 1 

4. Conclusion 

This paper presents a general framework for the optimal design of single-stage 
production units devoted to process goods subject to stochastic demand. The 
optimal design is achieved through the maximization of the profit expectation 
employing cubature formulae to evaluate the multi-dimension integral. The 
original problem is reformulated to fall in the MILP class, with linear process 
models, aiming to exploit the guarantee of existence of solutions and the 
robustness and efficiency of the algorithms available. The formulation was 
applied to the design of the furnace section of a ceramic tile plant producing 
three different products, showing excellent efficiency properties and appealing 
characteristics to handle linear process models of much larger size. It is also 
applicable to non-linear processes, although the complexity of the solution of 
the resulting MINLPs might introduce more significant problems limitations. 
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