
17th European Symposium on Computer Aided Process Engineering – ESCAPE17 
V. Plesu and P.S. Agachi (Editors)  
© 2007 Elsevier B.V. All rights reserved.  1 

 

Ant Colony Optimization: A Leading Algorithm in 
Future Optimization of Chemical Processes  

Farzaneh Jalalinejad, Farhang Jalali-Farahania, Navid Mostoufi, Rahmat 
Sotudeh-Gharebagh 

aDepartment of Chemical Engineering, University of Tehran, P.O.Box 11365/4563, 
Tehran, Iran,  fjlali@ut.ac.ir 
 

Abstract 

Ant colony optimization is a metaheuristic algorithm whose power leads to 
lower computational cost to optimize complicated problems. Although usually 
used for discrete domains, this algorithm with some necessary modifications has 
been applied to continuous optimization. Two examples with varying degrees of 
complexities are presented as an illustration for solving a large class of process 
optimization problem in chemical engineering. This algorithm is simple to 
implement and the results of case studies shows its ability to provide fast and 
accurate solutions. 
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1. Introduction 

Ant colony optimization (ACO) was introduced as a novel nature-inspired 
metaheuristic by M. Dorigo et al. [1]. A metaheuristic refers to a master strategy 
that guides and modifies other heuristics to produce solutions beyond those that 
are normally generated in a quest for local optimality.  ACO is mainly 
applicable to discrete optimization problems such as the traveling salesman 
problem [2].  However, it can be also applied to continuous domains such as 
optimal design and scheduling of batch plants [3], optimization of liquid-liquid 
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extraction process [4]. In the present study, a new version of multi-dimensional 
ACO for continuous domain has been introduced by combining ACO with a 
direct-search method. Two examples with varying degrees of complexities were 
presented as an illustration for solving a large class of process optimization 
problems in chemical engineering. 

2. An Overview of ACO 

Ant colonies are distributed systems that in spite of the simplicity of their 
individuals, presents a highly structured social organization. As a result, it 
makes it possible to do hard tasks [1].  The main idea of this method is derived 
from the real ant foraging behavior. Ants search randomly to find food. As soon 
as they find food, in the way back, they produce chemicals that are called 
pheromones. By producing pheromone, each ant helps others to pursue the 
marked way indirectly and find food faster. Although amount of pheromone 
will decrease due to vaporization, but this also helps colony to explore new 
ways instead of only one way. When amount of pheromone is increased in one 
way, other ants find this way more attractive and follow the same way. 

2.1. ACO Algorithm for Continuous Domain 

In order to apply ACO algorithm in continuous domain a new data structure is 
needed. The data structure which has been used in this work is shown in Fig. 1.  
The two dimensional n × m matrixes is the search area where n is the number of 
variable to be optimized and m is the number of ants (i.e., regions in continuous 
domain) which are used to search with m≥n [1]. fi and τi are 1×m vectors 
representing the ith region objective 
function and pheromone trail amount, 
respectively. 

2.2. Continuous Ant Colony Optimization 
(CACO) Algorithm 

The CACO algorithm is described below. 
 
a) Initialization 
In this stage each region is randomly 
initialized for each variable in the feasible 
interval. Feasible interval is defined by 
problem constraint. The equal amount of 
pheromone is also placed in pheromone 
trail vector. 
b) Global search      

 
Fig. 1 CACO data structure 
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The main responsibility of global ants is to search globally in order to escape 
local optimum traps. The global search consists of three operations: crossover, 
mutation and trail diffusion. In mutation, each ant jumps into a new region 
according to Eq. (1). Trail diffusion is a stage in which two parent ants are 
randomly chosen and the new infant is born to keep the behavior of parents. 

The new coefficient (-1)1+rand (1) is added to the main equation in this work to 
make the direction of jump randomly in both direction.  

c) Local search   

Local ants search in a smaller region around the potential solution to improve 
the objective function. Different methods such as simulated annealing could be 
used for local search [5]. Direct search is used in the present work to decrease 
the load of computation in this stage.  Direct search checks nearby regions in 
both directions of each variable to find a better solution.  

d) Pheromone update 

Trail evaporation is used in order to ensure that the search during the next 
generation is not biased by the proceeding iteration. The pheromone trail is 
updated after each iteration as follows: 
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This new definition for adding pheromone used in this work was found to be 
better than the one used before [3] which is based on the fitness improvement. 
In the new pheromone update strategy, Eq. (2), evaporation and laying 
pheromone is kept in the proportional range and would prevent stagnation in the 
local minima. 

max(1-t/t )1+rand(1)step for variable i= (-1) max. step for i (1- r )
b

× ×  (1) 
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3. Problem Definition 

 Lurgi’s methanol technology 
uses a dual reactor system for 
synthesis of methanol (Fig. 2) [6]. 
The methanol synthesis reactions 
rates on commercial 
Cu/Zno/Al2o3 can be found on 
[7]. In the present study, the 
reactors are modeled base on a 
homogeneous one- dimensional 
fixed catalytic bed model in 
steady state .The mass and energy 
balances are shown as follows: 
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In the present study, the objective is to reach the maximum methanol production 
yield in the effluent of the gas cooled reactor. 
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Two cases were considered for optimization: 
Case 1: The control variable is the temperature of the steam drum, i.e., shell 
temperature of the water cooled reactor.  This is a single variable optimization 
problem. 
Case 2: The control variables are feed composition of the system.  This is a 
multi variable optimization problem. 

 Water-Cooled Reactor 

Make up water 

Synthesis gas 

Product gas 
outlet 

Effluent 

Steam drum 

Gas-Cooled Reactor 

Saturated steam  

 
Fig. 2 Methanol Reactors of Lurgi’s Process 



Ant Colony Optimization, a leading algorithm in future optimization of Chemical 
Processes  5 
4. Results and Discussion 

The two cases were solved using the CACO parameters shown in Table 1. In 
case 1 (single variable) CACO converges to the solution after only 6 iterations. 
The optimum value of shell temperature that increase the amount of methanol 
by 3.17 % is 233.9 0C. The result of the feed composition optimization is shown 
in Table 2 and the amount of methanol production increase by 2.54 %.    
  
Table 1. Ant colony parameters  

 Ants Crossover 
Probability 

Mutation  
Probability 

Evaporation 
rate 

Local ants 
% 

Case 1 20 50 40 0.9 40 
Case 2 20 60 50 0.95 45 

 
Table 2. Methanol reactors feed composition (mol fraction %) 

yCO  yCO2 yH2 
5.72 12.64 63.41 

 
Figures 3 and 4 illustrate the performance of the modified CACO algorithm for 
case 1.  The performance of the old strategy [3] is also shown in these figures.  
Figure 3 corresponds to the modification done in global search strategy (Eq. 1) 
and Figure 4 corresponds to the modification done in pheromone update (eq. 2). 
It could be seen in both figures that convergence (i.e., mean population should 
be close to best) in the modified algorithm is considerably faster than the old 
algorithm. 
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Fig. 3. Effect of modification in local search 
strategy on CACO convergence. 

Fig. 4.  Effect of modification in pheromone 
update strategy on CACO convergence. 
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5. Conclusions 

In the present study, an improved ACO data structure and algorithm for multi 
dimensional optimization has been developed. The algorithm is simple and fast 
compared to the conventional algorithm and could be applied to problems with 
different degree of complexity. This algorithm was successfully applied to the 
problem of methanol synthesis for both single and multiple dimensions. The ant 
colony approach could be included in the list of future reliable and useful 
optimization tools in chemical engineering. 

Nomenclature 

A                       Reactor transversal area (cm2) 
Cp                                   Mean specific heat (cal/g/K) 
d                        Reactor diameter (cm) 
F                        Molar flux (mol/s) 
G                       Mass flux (g/cm2/s) 
R                       Reaction Rate (mol/s/cm2) 
T                       Temperature (K) 
Twall                   Reactors wall temperature (K) 
U                       Overall heat transfer coefficient (cal/s/cm2/K) 
X                       Extent of reaction (mol/s) 
z                        Reactor axial variable 
α                       Stoichiometric coefficient 
ΔH                    Enthalpy (cal/mol) 
TOT                  Total 
i                         Number of independent reactions 
j                         Key components (CO, MeOH) 
k                        Reactor index 
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