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Abstract 

This paper presents an efficient solution approach to tackle large-scale single-
floor process plant layout problems. Based on the mixed integer linear 
programming (MILP) model proposed by Papageorgiou and Rotstein [1], the 
final layout (i.e. coordinates and dimensions) is determined from an initial 
feasible solution by an iterative improvement procedure using mixed integer 
optimisation. The applicability of the solution algorithm is demonstrated 
through two illustrative examples. 
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1. Introduction 

Plant layout is considered as one of the important parts in the design stage of a 
chemical plant. It deals with the spatial arrangement of equipment items and the 
required connections among them. The generation of a good layout needs great 
ingenuity and experience because of its significant impact on process design 
and operation. Engineering, economic, safety and management issues need to be 
considered simultaneously and a reasonable balance must be achieved between 
these criteria. 
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A number of methodologies have been proposed to tackle the process plant 
layout problem. Initial approaches were based on heuristic rules and graph 
partitioning techniques. Stochastic optimisation techniques [2] have been 
applied to obtain good quality solutions. Finally, mathematical programming 
models were presented to solve single and multiple floor process plant layout 
problems. A mixed integer nonlinear programming (MINLP) approach [3] 
integrated safety and economic considerations with layout issues. A discrete-
domain MILP model was developed in [4]. A number of continuous-domain 
MILP formulations have been proposed to determine the land area, floor 
location and detailed layout of each process unit [1, 5-8]. 
It is widely accepted that the optimal solutions for large-scale process plant 
layout problems are very difficult to achieve using current computational 
resources. The development of efficient solution methods are of significant 
importance since it offers great opportunities to obtain near optimal solutions 
within modest computational times. Efficient solution approaches for single and 
multiple floor cases were proposed in [9,10].The approach presented in this 
paper is an iterative one where the solution obtained from previous iteration is 
improved by releasing and reallocating a number of units in the flowsheet. This 
is tested on two illustrative examples and some comparative results are reported. 

2. Problem Statement 

The single-floor process plant layout problem can be stated as follows: Given (i) 
a set of equipment items and their dimensions, (ii) the connection costs among 
equipment items; determine the allocation of each equipment item (i.e., 
coordinates and orientations); so as to minimise the total connection cost. In this 
work, we adopt the continuous-domain MILP model (named as LAYOUT; 
Papageorgiou and Rotstein [1]) for the single-floor process plant layout problem 
where the optimal location of unit i is determined by continuous variables Xi 
and Yi. Binary variables E1ij and E2ij are used to avoid overlapping between 
units i and j. Equipment items are simplified as rectangular shapes and the 
connections among them are calculated as rectilinear distances. 

3. Iterative Solution Approach 

In this section, we present an iterative approach to tackle the single-floor 
process plant layout problem efficiently. According to this approach, we start 
from the first integer solution obtained by solving the LAYOUT model. Several 
units are then selected and reallocated by solving the reduced MILP model. The 
items that are not released maintain their relative positions. Finally, the 
approach terminates when no improvement of the objective function value is 
observed after a prespecified number of successive iterations.  
Next, the following sets are defined for the description of the iterative 
algorithm:  
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Sets 
 I Set of plant equipment units considered 
Δ  Set of units released in the subproblems 

 
The steps of the proposed approach are shown below: 

Step 1: Initialise φ=Δ . Solve LAYOUT for every Ii∈  to obtain the 
first integer solution. 

Step 2: Fix E1ij and E2ij for every ( ) Iji ∈, . 
Step 3: Decide which units are released either randomly or by 

probabilistic rules (see Table 1). Update Δ . 
Step 4: Release E1ij and E2ij if i and/or j Δ∈  
Step 5: Solve LAYOUT. If the objective function value over a 

prespecified number of successive iterations remains the same, 
STOP. Otherwise, φ=Δ ,go to Step 2. 

It is believed that the selection of released units is of significant importance to 
the final solution quality. Here, we propose random and probabilistic selection 
schemes as shown in Table 1.  
Table 1. Unit selection probability 

Approach Selection probability 

Random_M Uniform distribution 
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All algorithms used are named as Random_M, Connect_M, Cost_M and 
Link_N, where M and N represent the number of released units and links, 
respectively. Algorithm Random_M indicates that M units are chosen randomly. 
Alternatively, equipment items can be selected based on different probability 
distributions. In algorithms Connect_M and Cost_M, selection probabilities of 
each item, defined as Pi, are associated with the number of connections, NCi, 
and the unit connection costs of item i, respectively. Algorithm Link_N 
attempts to release all pairs of nodes that are connected by the N chosen links. 
The selection probability of each pair, PLij, is related to the connection costs 
between i and j. 
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4. Computational Results 

Two illustrative examples are investigated to demonstrate the applicability of 
the proposed iterative approach. Tables 2 and 3 list all the input data for both 
examples (rmu stands for relative monetary units).  
Table 2. Dimensions of equipment units for Examples 1 and 2 

 Example 1 Example 2
Unit iα [m] iβ [m] Unit iα [m] iβ [m] Unit iα [m] iβ [m] 

1 5.22 5.22 1 5.00 4.00 10 5.00 6.00 
2 11.42 11.42 2 5.00 4.00 11 5.00 6.00 
3 7.68 7.68 3 5.00 6.00 12 5.00 6.00 
4 8.48 8.48 4 5.00 4.00 13 5.00 4.00 
5 7.68 7.68 5 5.00 6.00 14 5.00 6.00 
6 2.60 2.60 6 5.00 8.00 15 5.00 4.00 
7 2.40 2.40 7 5.00 8.00 16 5.00 4.00 
  8 5.00 6.00 17 5.00 6.00 
  9 5.00 4.00 18 5.00 2.00 

Table 3. Connection costs for Examples 1 and 2 

Example 1 Example 2 
Connection Cost 

[rmu/m] 
Connection Cost 

[rmu/m] 
Connection Cost 

[rmu/m] 
(1,2) 346.0 (1,18) 200 (3,7) 230 
(1,5) 416.3 (18,7) 240 (4,9) 160 
(2,3) 118.0 (2,7) 230 (5,6) 250 
(3,4) 111.0 (3,6) 400 (5,9) 160 
(4,5) 85.3 (6,7) 230 (6,8) 170 
(5,6) 86.3 (7,10) 270 (7,14) 270 
(5,7) 82.8 (6,11) 280 (11,13) 300 
(6,7) 6.5 (13,10) 170 (13,15) 170 

  (10,6) 300 (8,16) 250 
  (8,17) 250 (16,8) 140 
  (9,12) 170 (9,8) 175 
  (12,8) 175 

Examples 1 and 2 are solved using 8 iterative algorithms and model LAYOUT 
as shown in Table 4. All problems are implemented in GAMS [11] using 
CPLEX mixed integer optimisation solver with 0% margin of optimality. All 
runs are performed on an hp pavilion laptop with 10000 seconds CPU limit. The 
proposed approach terminates when the objective function can not be improved 
after 20 successive iterations. Each algorithm is repeated 10 times and the best 
and median objective function values are reported together with the median 
computational times. 
Example 1 considers a 7-unit ethylene oxide plant introduced by Penteado and 
Ciric [3]. The optimal solution is 9948.03 rmu achieved by model LAYOUT 
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within 2.86 seconds. When applying iterative algorithms with different values 
of M and N, all algorithms end up with the optimal solution thus illustrating the 
robustness of the proposed approach. 
Example 2 considers the layout design of an 18-unit industrial multi-purpose 
batch plant presented by Georgiadis et al [4]. Within the prespecified CPU limit 
(10000s), model LAYOUT can not solve this example to optimality resulting in 
an integer feasible solution with an objective function value of 32550 rmu. The 
best result achieved through the iterative approach is 31640 rmu from Link_1 
and Link_2, which is 2.80% better than model LAYOUT. Also, note that the 
best median results has been obtained by Link_2 (31810 rmu), which 
constitutes a 2.27% improvement over the LAYOUT model. 
Table 4. Computational results for Examples 1 and 2 

 Example 1 Example 2 
Approach Best Median CPU Best Median CPU 
Random_2 9948.03 9948.03 4.49 31775 33067.5 30.50 
Random_3 9948.03 9948.03 6.76 31645 32492.5 92.15 
Connect_2 9948.03 9948.03 4.91 31710 32672 30.21 
Connect_3 9948.03 9948.03 6.23 31677.5 32331.25 87.25 

Cost_2 9948.03 9948.03 3.78 31715 32691.25 34.99 
Cost_3 9948.03 9948.03 8.33 31765 32813.75 75.75 
Link_1 9948.03 9948.03 3.92 31640 31972.5 39.90 
Link_2 9948.03 9948.03 16.08 31640 31810 498.34 

LAYOUT 9948.03 9948.03 2.86 32550 32550 10000* 
*Maximum CPU limit (10000s) 
 The layouts for both examples associated with the best objective function 
values obtained from the iterative approach are shown in Figure 1. 
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Figure 1. Best layout obtained for Examples 1 and 2 

Example (OBJ=9948.03) Example 2 (OBJ=31640) 
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5. Conclusions 

In this work, an iterative solution approach has been proposed to solve large- 
scale process plant layout problems. According to the MILP formulation [1], the 
solution quality has been improved from an initial feasible layout through an 
iterative process using releasing and reallocation schemes. During each 
iteration, process units are selected either randomly or based on specific 
probabilistic rules. Finally, the applicability of the proposed approach has been 
demonstrated by two illustrative examples. The results show that the iterative 
solution approach has great potential to obtain good quality solutions for 
process plant layout problems with large sizes using modest computational 
requirements. 
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