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Abstract 

Development of Quantitative Structure Property Relationships (QSPR) for 
property prediction, targeted for a particular applicability domain (AD), and 
definition of the AD boundaries are considered. The AD is defined in terms of 
the target compound (for which a property has to be predicted) belonging to a 
homologous series and including carbon atoms above a particular number. If the 
target compound satisfies these requirements simple linear QSPR, with one or 
two descriptors are shown to predict the property within experimental error 
level. The method presented can also identify the cases where lack of 
experimental data can prevent derivation of a reliable QSPR.     
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1. Introduction 

In recent years there is an increased interest in the development and use of 
Quantitative Structure-Property Relationship (QSPR) models for property 
prediction [1, 2]. In the traditional QSPR modeling techniques one large set of 
molecular descriptors and physical property data for a wide variety of 
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compounds is used as the “training set”. Because the structure-property 
relationship obtained is usually nonlinear, the prediction accuracy critically 
depends on the level of representation of the “target” compound’s (for which 
the property has to be predicted) structural groups in the training set. If the 
target structure is densely represented, the prediction can be expected to be 
much more accurate than if the target compound is sparsely represented. 
Moreover, the prediction accuracy cannot be reliably assessed.  
In an attempt to overcome the above limitations we have developed the 
“targeted” QSPR [3] method. With this method, only compounds “similar” to 
the target compound are included in the training set. The limited variability of 
the compounds enables developing simple, linear QSPRs for property 
prediction. In this paper it is demonstrated that targeted QSPR's (TQSPR's) can 
be developed for particular “applicability domains (AD)” and can consequently 
predict reliably properties and errors for compounds belonging to the AD. The 
proposed technique will be demonstrated for the n-alkane homologous series, 
defined as an AD. 

2. Applying the TQSPR method to the n - alkane Homologous Series  

The TQSPR technique is described in detail elsewhere [3]. A brief review of the 
method follows. The first stage of the TQSPR involves identification of a 
training set (similarity group) structurally related to the target compound for 
which properties have to be predicted.  For identification of the similarity group, 
a database of molecular descriptors, xij and property data yij for the predictive 
compounds are required, where i is the number of the compound and j is the 
number of the descriptor/property.  The same molecular descriptors for the 
target (xtj) and for all other compounds in the database should be available.  The 
similarity between the target and potential predictive compounds is measured 
by the partial correlation coefficient, rti ( T

ittir xx= ), between the vector of the 
molecular descriptors of the target compound, xt, and that of a potential 
predictive compound xi.  Absolute rti values close to one ( tir  ≈1) indicate high 
level of structural similarity. The training set is established by selecting the first 
p compounds of the highest tir values for which experimental values of the 
desired property are available.  For development of a TQSPR a linear structure-
property relation is assumed of the form: 
 

mmζζζy ββββ …22110 ++= +ε                                                                 (1) 
 
where y is a p vector of the respective measured property values, ζ1, ζ 2 … ζ m are 
p vectors of molecular descriptors mββββ …210 ,,  are the corresponding 
model parameters, and ε is a p vector of stochastic terms (measurement errors).  
The selection of descriptors to the TQSPR model continues as long as the 
average model relative prediction error for the training set (εa) exceeds a pre-



Identifying Applicability Domains for Quantitative Structure Property Relationships 3  

specified error tolerance (εg). The so-obtained TQSPR (Eq. 1) can be 
subsequently employed for estimating the property value for the target.  
 
Table 1. Experimental* and predicted property data taken from DIPPR database 

No. Comp. Name
Carbon 
Atoms

Normal Boiling 
Temp. (Tb, K)

Reliability 
%

Melting Point 
Temp. (Tm, K)

Reliability 
(%)

Critical 
Pressure 

(Mpa)
Reliability 

(%)

Liq. Molar 
Volume 

(M3/kmol)
Reliability 

(%)
1 ethane 2 184.55 1 90.352 0.2 4.872 0.2 0.0954 1
2 propane 3 231.11 1 85.47 0.2 4.248 0.2 0.0757 1
3 n-butane 4 272.65 1 134.86 0.2 3.796 0.2 0.1014 1
4 n-pentane 5 309.22 1 143.42 0.2 3.37 1 0.1160 1
5 n-hexane 6 341.88 1 177.83 0.2 3.025 1 0.1314 1
6 n-heptane 7 371.58 1 182.57 0.2 2.74 3 0.1470 1
7 n-octane 8 398.83 1 216.38 0.2 2.49 3 0.1626 1
8 n-nonane 9 423.97 1 219.66 1 2.29 3 0.1789 1
9 n-decane 10 447.305 1 243.51 1 2.11 3 0.1958 1
10 n-undecane 11 469.078 1 247.571 1 1.95 5 0.2122 1
11 n-dodecane 12 489.473 1 263.568 1 1.82 10 0.2286 1
12 n-tridecane 13 508.616 1 267.76 0.2 1.68 10 0.2456 1
13 n-tetradecane 14 526.727 1 279.01 0.2 1.57 25 0.2613 1
14 n-pentadecane 15 543.835 1 283.072 0.2 1.48 25 0.2778 1
15 n-hexadecane 16 560.014 1 291.308 0.2 1.4 25 0.2942 1
16 n-heptadecane 17 575.3 1 295.134 0.2 1.34 25 0.3109 1
17 n-octadecane 18 589.86 1 301.31 0.2 1.27 25 0.3282 1
18 n-nonadecane 19 603.05 1 305.04 0.2 1.21 25 0.3456 1
19 n-eicosane 20 616.93 1 309.58 0.2 1.16 25 0.3664 1
20 n-heneicosane 21 629.65 1 313.35 1 1.11 25 0.3812 1
21 n-docosane 22 641.75 1 317.15 1 1.06 25 0.3991 1
22 n-tricosane 23 653.35 1 320.65 1 1.02 25 0.4169 1
23 n-tetracosane 24 664.45 1 323.75 3 0.98 25 0.4349 1
24 n-pentacosane 25 675.05 1 326.65 1 0.95 25 0.4526 1
25 n-hexacosane 26 685.35 1 329.25 1 0.91 25 0.4712 1
26 n-heptacosane 27 695.25 3 332.15 1 0.883 25 0.4882 5
27 n-octacosane 28 704.75 1 334.35 1 0.85 25 0.5077 1
28 n-nonacosane 29 713.95 3 336.85 1 0.826 25 0.5238 1
29 n-triacontane 30 722.85 1 338.65 1 0.8 25 0.5405 1
30 n-dotriacontane 32 738.85 3 342.35 1 0.75 25 0.5766 1
31 n-pentatriacontane 35
32 n-hexatriacontane 36 770.15 1 349.05 1 0.68 25 0.6507 1
33 n-tetracontane 40
34 n-tetratetracontane 44  

*Experimental data is shown in bold, italic letters. 
 
To carry out the targeted QSPR method studies, we have developed a molecular 
descriptor database with 1630 descriptors calculated with the Dragon program 
(Copyright of TALETE srl, http://www.talete.mi.it) for 259 of the hydrocarbons 
listed in [2]. Measured and predicted property data from the DIPPR [4] database 
were used in the studies. Modified versions of the stepwise regression program 
(SROV) of Shacham and Brauner [3] were prepared for the identification of the 
similarity groups and derivations of the QSPRs. The property data used, 
namely: normal boiling temperature Tb; melting point temperature, Tm; critical 
pressure, Pc; liquid molar volume, Mv; critical temp., Tc and critical volume, Vc 
for the compounds included in this study are shown in Table 1 (except Tc and 
Vc). The “reliability” assigned by DIPPR on these values (i.e. estimate of the 
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upper error bound, %) are also given. Only experimental data were included in 
the training sets (shown in by bold, italic letters). 

2.1. The distance between the target compound and the training set  

For a target compound, which is a member of a homologous series, the highest 
structural similarity is with its two closest neighbors. Therefore, the maximal 
achievable similarity level (or distance) between the target and a potential 
training set can be well represented by the correlation coefficient value ( tir ) 
between the target and its closest neighbor in the series. The sequence of these 

tir  values for the n-alkane series is : ethane – 0.884 – propane – 0.935 – n-
butane – 0.947 – n-pentane – 0.961 – n-hexane – 0.967 - n-heptane -  0.975 – n-
octane, and reaches values over .99 for n-pentatriacontane and above. Hence, 
the correlation coefficient increases monotonically with increasing the carbon 
number. It can be therefore expected that predictions of higher accuracy are 
achievable for compounds of higher carbon number. 

2.2. Modeling Tb, Tm, , Tc, Pc, Mv and Vc for the n-alkane homologous series 

It is well known that properties within homologous series change 
asymptotically with carbon number. An example for the critical temperature, 
normal boiling temperature and melting temperature of the n-alkanes studied is 
presented in Fig. 1. It can be seen that, because of the asymptotic relationship, 
the rate of the increase of the properties becomes more moderate for higher 
carbon numbers, hence exhibiting a non-linear relation with the carbon number.  
To derive the QSPR for the n-alkane series, n-hexadecane (compound which is 
located near the middle of the AD studied) was selected as the target compound. 
The compounds with experimental data available for the particular property 
were included in the training set, except for ethane, propane, n-butane and n-
pentane, since it was determined earlier (section 2.1) that their level of 
similarity with the rest of the series is rather low. 
Using Tb data, the targeted QSPR technique identified the descriptor RTu (a 
GETAWAY descriptor) as the dominant descriptor (the descriptor which has 
the highest correlation with the property) and the following linear QSPR was 
identified: Tb = -57.957+22.6315*RTu with an average error of εa = 0.3% for 
the training set. The equation was used to calculate the Tb of all compounds 
included in this study. The differences between the calculated values and those 
reported by DIPPR (either experimental or predicted) are shown in Fig. 2. They 
are larger for compounds with smaller number of carbon atoms and reach 0.55 
% for n-hexane. For ethane, propane, n-butane and n-pentane, the prediction 
errors are 17.7, 4.5, 1.86 and 2.1 %, respectively. Since the reliability of the Tb 
data is 1 % or more, the QSPR provides prediction with adequate accuracy for 
members of the n-alkane series with six or more carbon numbers. Adding more 
descriptors reduces the training set average percent error considerably, but does 
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not improve the asymptotic representation of the Tb of the compounds which do 
not belong to the training set and have measured data, thus does not increase the 
confidence in the predicted values. 
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Figure 1. Variation of Tc, Tm and Tb as 
function of the carbon number in the n-
alkane homologous series 
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Figure 2. Difference between the QSPR 
boiling temperatures calculated and DIPPR 
values. 

 
Using the RTu descriptor to represent the melting temperature data yields a 
QSPR with training set average percent error of 2.67. This error is too large in 
comparison to Tm reliability data, thus there is a need to add more descriptors. 
The descriptor R2e+ (also a GETAWAY descriptor) was identified as the next 
one to be included in the QSPR, whereby Tm = 372.8664+0.66944*RTu-
1942.3213*R2e+, with εa = 0.4 %. The Tm prediction error is < 0.5% for 
compounds with ten or more carbon atoms, and < 2 % for compounds with 5 to 
9 carbon atoms. The prediction errors are considerably higher for ethane, 
propane, n-butane and n-pentane. Thus, the QSPR with the descriptors RTu and 
R2e+ can be used with confidence for predicting melting point temperature of 
members of the n-alkane series with 10 or more carbon atoms. 
The critical temperature of n-alkanes can be represented by: Tc = 128.677 + 
21.7719 *RTu, with εa = 0.29 %. This error is acceptable in view of the 
reliability of the Tc data (0.2 % for most of the compounds). However, the 
residual plot (not shown) of the difference between the experimental data and 
the calculated values versus the experimental data shows a curvature that is not 
explained by the single descriptor QSPR. Adding the RARS descriptor (a 
GETAWAY descriptor) to the QSPR yields the QSPR Tb = 554.2874 
+12.0076*RTu- 293.3629*RARS with εa = 0.058 %. This model yields 
prediction errors of ≤1 % even for the light compounds; propane, n-butane and 
n-pentane. 
The dominant descriptor selected for representing the critical pressure is the 
descriptor H3p belonging to the GETAWAY descriptors. The QSPR obtained 
using this descriptor is: Pc = 4.0804 -3.5271*H3p with εa = 0.42 %. Considering 
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the reliability of the Pc data that varies between 0.2 % to 25 % (Table 1), and 
the random error distribution indicated by the residual plot, suggest that the 
representation of Pc by a single descriptor QSPR is adequate. It is well within 
the reliability level for compounds with five or more carbon atoms. 
Liquid molar volume can be represented well by a QSPR containing the SEig 
descriptor (a “geometrical” descriptor): Mv = 0.033836 + 0.0025053 *SEig with 
εa = 0.28 %. This model represents the liquid molar volume within experimental 
error level for n-alkanes with five or more carbon atoms. 
Experimental critical volume values are available only for a few members of the 
n-alkane series with 2 to 7 carbon atoms. As the above analysis has shown that 
the properties of the first few compounds in the homologous series correlate 
poorly with the remaining compounds, we should conclude that the available 
data is insufficient to derive a QSPR for the critical volume with reasonable 
confidence in the predicted values. 

3. Conclusions 

In order to predict properties with confidence it is essential to define an AD for 
the QSPR used. In this paper we demonstrated the use of similarity measures to 
define the AD of a QSPR for homologous series in terms of the structural 
similarity of a target compound and compounds with carbon atoms above a 
particular number. It was shown that if the target compound satisfies these 
requirements the QSPR can predict the property within experimental error level. 
The proposed method has been tested also with the 1-alkene and alkyl benzene 
homologous series and the same results were obtained using the same 
descriptor-property combinations shown here for n-alkanes. The presented 
method can also determine when the lack of experimental data can prevent 
derivation of a reliable QSPR.  
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