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Abstract 

A computationally efficient technique is presented to compute the dynamical 
behavior of an emulsion polymerization process based on a strongly nonlinear 
model with non-local couplings taken into account. We propose a numerical 
study adapted to the population balance equation (PBE). This numerical 
investigation is based on an academic example of hyperbolic type. The partial 
differential equation (PDE) is discretized by the methods of finite differences 
and orthogonal collocations. Via simulations, the analytical and numerical 
solutions are compared. Finally, it seems that the method of orthogonal 
collocations is the most appropriate for numerical investigations of such 
process. 
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1. Introduction 

Emulsion polymerization is a chemical reaction in which the main reacting are 
the monomer (butyl acrylate), the surfactant (dodecyl sulphate) and the initiator 
(persulfate potassium). We consider a batch reactor in which the monomer is 
dispersed in the aqueous phase thanks to the surfactant. Conventional emulsion 
polymerization starts in the aqueous phase where the soluble water initiator 
decomposes and generates primary radicals. These radicals propagate and then 
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nucleate new particles by entering in micelles. The polymer chains continue to 
propagate inside the particles causing the particles to grow in size. We denote 
by ),( trF , the particle size distribution function (PSD). The size and time 
evolution of F  is influenced by physical and chemical processes like particle 
growth and particle nucleation, and is described by a population balance 
equation (PBE). We adopt the general structure of the pseudo-
homopolymerization of Salvidar et al. [1] and rounded out by Immanuel et al. 
[2]. Finally, the pseudo-homopolymerization model is described by two 
nonlinear partial differential equations coupled with a system of nonlinear 
ordinary differential equations (given by the balance equations for the monomer 
and other components). The PSD is strongly correlated with the end product 
properties of the latex. It influences the rheological properties, adhesion and 
film-forming properties of final products. 

2. Problem Statement, background 

Given the system complexity, our main interest is to build a reliable algorithm 
to make an efficient prediction for the dynamical behavior of emulsion 
polymerization processes. The numerical simulations are very useful for the 
design of experimental reactors and sate observers. We can also consider 
control laws to track a goal trajectory stated according to the properties of the 
required product. To approximate the PBE, we must use a method of 
discretization which guaranties a fast and accurate algorithm. The most popular 
method is that of finite differences. Using this technique, the r -domain is 
divided into N  points regularly spaced with a step of discretization rΔ  and the 
derivative with respect to r is approximated using limited Taylor developpment. 
Fig. 1 represents the profile of ),( trF  with nmr 100= , for different N : 

 

Figure 1 : Profile of ),( trF  for N =100 (▬), N =200 (▬), N =400 (▬) and N =800 (▬) 

In spite of a major decrease of rΔ , the consistent of the method of finite 
differences is never satisfied. Obviously we could decrease again the step of 
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discretization but penalizing the algorithm fastness. Thus, given the initial aim, 
the method of finite differences is badly adapted to simulate efficiently the 
emulsion polymerization model. 

3. Paper approach  

We study a second method of discretization namely the method of orthogonal 
collocations. In this technique, ),( trF  is expressed in terms of Lagrange 
polynomials with resepct to r  within the domain ],[ maxrrnuc . 

3.1. Methodology  

The methods of finite differences and orthogonal collocations have been 
implemented on a hyperbolic system in which an analytical solution has been 
worked out by the method of characteristics. Analytical and numerical solutions 
will be compared by simulations. 

3.2. Case study 

In order to study methods of discretization, the proposed system is a population 
balance equation of the form: 
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with 0),0( =tF  and Ω  denotes [,0[]r,r[ maxnuc +∞× . The growth and 
nucleation terms denoted respectively by ),( trG  and )(tRnuc  are radius and 
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with 0),0( =tF . Now, from Eq. (2) we can use the method of characteristics 
to work out an analytical solution of Eq. (1). The characteristic curves are 
defined by )),(x( ττ  where )(x τ  is the solution of the ordinary differential 
equation (ODE): 

Ω
τ
τ

τ

τ

∈∀
⎪
⎩

⎪
⎨

⎧

=

−
=

=

−

)t,r(,
r)(x

x
)e1(G

d
dx

t

2

T/
0

  

By integrating, we get: 
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So, the characteristics are increasing and parallel curves passing through the 
plan Ω  from left to right. Finally, using directly the method of characteristics, 
the analytical solutions of Eq.1 are : 
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discretize Eq. (1) using the methods of finite differences and orthogonal 
collocations. Discretizing Eq. (1) by the finites differences, yields the following 
system of ODE: 

⎪
⎩

⎪
⎨

⎧

=∀
−

−=

−
−=

−− N,,2i,
r

FGFG
F

r
RFG

F

1i1iii
i

nuc11
1

…�

�

Δ

Δ  4.  



Numerical investigation of a dynamical model for emulsion pseudo-homopolymerization 5  

where 
irr
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orthogonal collocations, )t,r(F  is approximated by a Lagrange polynomial of 
degree N . The support of interpolation composed by { }N10 r,,r,r … , with 

nuc0 rr =  and maxN rr = , is constitued of 1N +  roots of a Jacobi polynomial 
1zzz0 N10 =<<<= "  such as λδ += zr , with nucmax rr −=δ  and 

nucr=λ . Finally ,with respect to ]1,0[z∈  Eq. (1) becomes the following 
system of ODE: 
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3.3. Results & discussions 

Taking 22
0 e11,2G −= , 50T = , 6e1 −=α , 15=σ  and 66=μ , Fig. 2 

represents the solutions of Eq. (3) (▬) , Eq. (4) (▬) and Eq. (5) (о), for 
nm213r = . 

 

Figure 2 : Analytical and numerical solutions of Eq.1 

For both techniques, we have chosen 20 points of discretization. Fig. 2 exhibits 
the accuracy of the method of orthogonal collocations which is confused with 
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the analytical solution. Moreover only 20 ODE have been integrated. Finally, 
the method of orthogonal collocations is fast and precise and satisfies the initial 
aim : to develop a reliable numerical algorithm. In conclusion we propose a 
simulation of the emulsion polymerization process using the method of 
orthogonal collocations.  

 

Figure 3 : Numerical solution of ),( trF  using the method of orthogonal collocations 

Fig. 3 represents the profile of ),( trF  with nmr 100= , for 200 (▬) and 300 
(▬) points of collocations. The consistent is checked since both solutions are 
equal. 

4. Conclusions and future works 

Thanks to the method of collocations, we have developed a fast and precise 
numerical algorithm to simulate particularly a model of emulsion 
polymerization. Others techniques as fast and precise as the method of 
orthogonal collocations, have been employed to solve numerically a hyperbolic 
PDE [4].  Our numerical investigation based on an academic system can be 
extended to other processes like crystallization. In future works, we will use the 
numerical model to design state observers and to study control laws in order to 
improve the product quality in emulsion pseudo-homopolymerization 
processing.  
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