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Abstract 

Simulation of multi-stage flash (MSF) desalination processes that have 
production capacity range between 50,000 to 75,000 m3/d is an intensive 
computational problem that requires high computer processing speed despite the 
availability of advanced processing computer power in hand nowadays. In this 
work, a comparative study is conducted to explore the performance of different 
numerical techniques to solve large set of nonlinear equations generated by 
large scale MSF models. These algorithms can be categorized into three groups 
namely; conventional numerical approximation methods, multi-objective 
optimization based methods, and the last group comprises artificial neural 
networks (ANN) based models and genetic algorithms (GA) based methods. 
The problem of solving large sets of nonlinear equations with upper and lower 
constraints is accomplished successfully using all algorithms with different 
prediction efficiency and speed. The idea of using GA and ANN based 
algorithms in simulating the MSF model is basically used to generate feasible 
initial solution estimates that were used as starting guesses for other numerical 
methods in the former case and to eliminate the step of providing these initial 
guesses in the later case. Significant reduction of computation effort was 
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attained using ANN-based techniques. The outcome of this work can be utilized 
to develop new generation of process simulators that are based on well trained 
ANNs in order to achieve speedup of computations and to generate more 
reliable predictions without detracting from accuracy.  
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1. Introduction 

The multistage flash desalination (MSF) accounts for 50% of the entire 
desalination industry. Since the late 1950’s the process capacity increased from 
less than 500 m3/d to 75,000 m3/d. The problem of solving the MSF model was 
considered in many previous studies using different mathematical approaches. 
Glueck et al. [1] and Hayakawa et al. [2] applied the Newton-Raphson 
procedure to solve the model. Helal et al. [3] linearized the system of nonlinear 
equations and formulated a tridiagonal matrix that was solved using Thomas 
algorithm. El-Dessouky H., Bingulac [4] used a fixed point iterative algorithm 
to solve the same problem. Others approached the MSF model problem solution 
using optimization techniques [5-7]. Despite the efficiency of these methods, 
they remain specific to the system of equations considered and cannot be 
generalized for all process models. Evolutionary based optimization techniques 
such as the Genetic Algorithms (GA) have been used extensively over the past 
few years. Genetic Algorithms has the advantage of solving optimization 
problems without the need to compute function derivatives. Another advantage 
is that GA algorithms do not require an initial condition to converge to an 
optimal solution. Artificial Neural Networks (ANN) are well known for their 
excellent property of approximating the behavior of processes. They have been 
the focus of many system identification studies in the past two decades [8-11].  
From the previously mentioned work in the field of MSF model simulation, a 
great need stems for finding a more reliable solution method that exhibits 
properties like fast convergence, assured system stability, high modeling 
accuracy and reduced computational overhead. In this work, a comparative 
study is conducted to explore the merits and shortcomings of conventional 
solvers as compared to more advanced techniques in solving the MSF model.  

2. MSF Process and Model 

The MSF desalination process consists of (n) stages, the brine heater, the 
vacuum ejector, the condenser, chemical addition pumps, and the freed screens. 
Flashing takes place from the brine flowing across the stages. The flashed off 
vapor condenses on the condenser tubes, where the feed seawater recovers the 
latent heat of condensation before entering the brine heater [12]. The MSF 
model contains balance equations for each flashing stage as well as correlations 
for physical properties and heat transfer coefficients. Assumptions used to 
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develop the model include the following: Steady state operation; Heat losses to 
the surroundings are negligible; Equal heat transfer area in each flashing stage; 
All physical properties of the seawater, brine, water vapor, and water 
condensate depend on temperature and salinity. The properties include the 
specific heat at constant pressure, dynamic viscosity, thermal conductivity, and 
density; The overall heat transfer coefficient is the sum of the thermal 
resistances expressed in terms of the inside and outside heat transfer coefficient, 
the fouling resistance, and the thermal resistance of the condenser tube; The 
latent heat of formed/condensed vapor depends on temperature; 
Thermodynamic losses include the boiling point elevation, the non-equilibrium 
allowance, and demister losses; The distillate product is salt free. Each flashing 
stage constitutes five balance equations; these are mass balance, salt balance, 
flashing brine energy balance, condenser energy balance, and condenser heat 
transfer rate. These relations are given by Eqns. 1-5. 

Bj-1 + 
j 1

k
k 1

D
−

=
∑  = Bj + 

j
k

k 1
D

=
∑  (1) 

− −=jb j j 1 j 1X B X B  (2) 

Dj λvj = Bj-1 Cpb (Tbj-1 – Tbj) (3) 

Dj λcj + Cpd (Tcj−1 – Tcj)
j 1

k
k 1

D
−

=
∑ = Mf Cpf (Tfj – Tfj+1) (4) 

Mf Cpf (Tfi – Tfi+1) = Ucj Ac (LMTD)cj (5) 

In Eq. (5), the logarithmic mean temperature difference is given by 

(LMTD)cj = (Tfi – Tfi+1)/ln((Tci – Tfi+1)/(Tci – Tfi)) (6) 

Therefore, the total number of equations is (5n), where (n) is the number of 
flashing stages. In addition, there is a system constraint, where the distillate 
mass flow is equal to the sum of the distillate product in all stages. This 
equation (constraint) is used to calculate the heat transfer area in the flashing 
stages (A), which is assumed equal in each stage.  

3. Solution Algorithms  

There are several approaches for solving the MSF model equations. The first is 
to use the root finding solvers, which includes methods like the conventional 
Newton-Raphson method, the globally convergent Newton’s method, and the 
globally convergent Broyden’s. A second approach is to use optimization 
solvers, which includes the nonlinear squares algorithm, the least-squares 
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algorithm, and the sequential quadratic algorithm [13]. The third class of solvers 
is the genetic algorithms (GA), which uses a stochastic solution approach. The 
GA implementation used in this work is the Augmented Lagrangian Genetic 
Algorithm (ALGA) [14]. The final solution algorithm is the Artificial Neural 
Network (ANN). In this work the back-propagation algorithm which is based on 
the general gradient descent method was implemented [15].  

4. Results and Discussion 

The MSF mechanistic model is coded in Matlab and is used to evaluate the 
residual functions needed by the solvers. A set of operating conditions and 
design parameters for a typical plant was selected as a basis for the model 
solution. Computation results for the root finding methods are summarized in 
Table (1).   
Table (1) Solution results using the Numerical Methods 

Solution Method Objective 
Function 

No. of 
Iterations 

No. of 
Function  
Calls 

CPU 
Time 
(sec) 

Conventional Newton-Raphson 1.98e-04 200 24400 734.81 
Global Convergent Newton 8.11e-06 7 859 74.31 
Global Broyden's 7.03e-06 20 772 44.23 

Results of the optimization based methods are shown in Table (2). The first 
method considered is the trust-region reflective method, which uses reflective 
Gauss-Newton. The CPU time and objective function values were reduced 
considerably when the same solver was reconfigured (Cases 1.2-1.7).  
Table(2) Solution results using the Optimization Methods 

No Solution Method Objective 
Function 

No. of  
Iterations 

No. of  
Func. 
Calls 

CPU  
Time  
(sec) 

1.1 Trust-region reflective 
Gauss-Newton 7.97E-05 166 20374 70.6 

1.2 Gauss-Newton-BFGS, CubicPoly 1.25E-06 26 3173 10.7 
1.3 Gauss-Newton-BFGS, QuadCubic 8.46E-09 32 4026 13.4 
1.4 LM-BFGS, CubicPoly 1.21E-06 22 2685 8.93 
1.5 LM-BFGS, QuadCubic 1.85E-09 30 3778 12.55 
1.6 Dogleg-BFGS, CubicPoly 1.67E-09 18 2318 7.83 
1.7 Dogleg-BFGS, QuadCubic 1.68E-09 18 2318 8.00 
2 Nonlinear Least Squares 2.28E-04 30 3661 428.2 
3 MiniMax 2.72E-04 46 5827 276.3 
4 Constrained Minimization 2.06E-04 21 2553 75.90 
5 Multi-objective Goal 

Attainment 
Attain.  
Factor  
0.4039 

98 11275 691.8 
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Applying the GA algorithm to the MSF problem requires careful definition of 
the population diversity and size at each generation. In this problem the 
population size was selected same as the number of variables and the diversity 
was taken over a range of -1 to 10. Results for the GA algorithm are shown in 
Table (3). 
Table (3) Solution results using the GA-based Methods 

Case Objective 
Function 

No. of  
Iterations 

No. of  
Func. Calls 

CPU Time 
(sec) 

(No GA) 7.97E-05 166 20374 70.61 
Base Case  1.56E-06 33 4162 28.9 
+20% of Base Case 5.88E-04 212 26500 81.5 
- 20% of Base Case 2.45E-04 245 30380 104.1 

 
Application of the ANN model requires sufficient data for training. Six input 
variables and twenty output variables were used to train a set of 6 ANNs. Each 
ANN receives the same input variables and predicts 3 output variables except 
the 6th ANN produces 4 outputs. The generated set of input output data covered 
most of the expected operational ranges of the variables. The results of training 
indicate that the training time for the first 5 networks was in the range 0.8-1.4 
hrs whereas the last ANN took about 3.5 hr training time. Table (4) shows the 
simulation speed and prediction error for each of the 6 ANNs.  
Table (4) Prediction performance of the ANN-based Method 

ANN No. Simulation Time (sec)  Relative Prediction Error 
1 0.6623 1.64e-6 
2 0.0099 4.60e-6 
3 0.0098 4.95e-3 
4 0.0093 4.58e-8 
5 0.0102 3.70e-5 
6 0.0098 8.72e-7 

6. Conclusions  

The MSF problem solution is so sensitive to the value of the initial guesses 
vector and most of the conventional techniques fail to converge when started 
away from the acceptable location of this vector. For such cases a priory 
prediction of the values for initial guesses using simple MSF models helps 
conventional solution algorithms to converge to a solution. Genetic algorithms 
can be used successfully for predicting reasonable initial guesses to be used 
later as inputs to conventional solvers. This way no matter what are the changes 
in the model, it can still be solved by conventional solvers. Comparison of the 
solution speeds for the tested solvers gives the following rank in descending 
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order: ANNs prediction (0.7113 s), Optimization using the Dogleg-BFGS, with 
Cubic Polynomial line search (7.83 s), GA-based optimization (28.9 s), and 
finally the global Broyden's solver (44.23 s). A reduction factor of about 11 is 
achieved between ANN-based solver and the fastest conventional solver. 
Hence, the ANN-based solvers were superior in reducing the computational 
effort. Other attractive features for using ANNs are the guaranteed accuracy of 
prediction and that it doesn't need initial guesses like other solvers. These 
features of the ANN-based predictors make them favorable than other 
conventional solution methods for applications involving model analysis, online 
parameter optimization and simulation applications. 
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