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Abstract  

A major difficulty affecting the control of product quality in industrial 
polymerization is the lack of suitable on-line measurements of polymer 
properties such as melt flow rate (MFR), polymer density and molecular weight 
distribution. Therefore traditional polymerization control has been carried out 
by sampling, off-line characterization of polymer quality in a laboratory and 
manual recording results. This approach is very time consuming and then causes 
lots off specification products. A practical on-line inferential scheme for 
estimating the melt flow rate and the polymer density proposed in this paper is a 
neural network approach based on input-output information of an industrial 
polyethylene plant. Available on-line temperature, pressure, flow rate, gas 
composition and other variables measurements of the process have been used to 
develop the network models; the neural networks have been trained based on 
actual operating data with backpropagation and Levenberg-Marquart 
techniques. Simulation results show that the developed neural network process 
models with two hidden layers can successfully predict both the melt flow rate 
and the density. Then the models can be applied to predict these quality 
variables on-line. Information regarding the on-line estimation of the quality 
variables can be useful in the formulation of advanced model based control 
techniques to achieve good control of product specifications as desired. 
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1. Introduction 

Due to a growing demand for consistent and high quality polymer, there 
is strong need to control polymer properties as specified with optimal cost. 
Generally, the polymer’s quality is defined in term of properties such as melt 
flow rate, molecular weight distribution and density. The melt flow rate of a 
polymer is vital to designing and controlling its processing; the flow of a plastic 
material is used as an indication of whether its final properties will be consistent 
with those required by an application. For the polymer density, it is empirically 
correlated to weight percent co-monomer incorporated in the polymer. Many 
polymer end-use properties are also dependent upon molecular weight 
distribution (MWD) because MWD is largely responsible for rheological 
properties. However, these quality variables are rarely available at frequent 
interval with substantial delays between sampling and analysis. Especially, off-
line analyzing of melt flow rate is time consuming around 1 to 4 hours in a 
laboratory. Such a delay can result in product quality inconsistency and process 
control difficulty. One of solutions for improving on-line measurement is using 
a dynamic model based upon the mathematics-physics-chemistry of the process 
to predict the effect of changes in the reactor condition including the polymer 
properties. The use of mechanistic approach leads to less accurate prediction or 
large discrepancy because of process-model mismatch [1,2,3]. An alternative 
technique which can reduce the problematic of process-model mismatch is the 
use of an empirical technique to predict the polymer properties.  

Here, the quality of polymer: melt flow rate (MFR) and density, have 
been predicted on-line by neural network models based on actual plant data.  

2. Polyethylene process 

The polyethylene process has a simplified schematic illustrated in 
Figure1. Ethylene, co-monomer and hydrogen are fed along with the prepared 
catalyst and hexane to the first reactor of a polymerization section. The product 
from the first reactor is then fed to the second reactor. Polymerization occurs in 
the reactors forming the polyethylene slurry. The slurry containing hexane 
proceeds to the separation and drying section. Polyethylene cake with some 
hexane and hexane are obtained from separation using a centrifuge. The 
polyethylene cake then leaves the vessel and proceeds to a rotary dryer. The 
obtained dried polymer flows to the purge column. Hot nitrogen flows through 
the purge column to remove most of the remaining hexane. Some of the hexane 
in the nitrogen is removed and then sent to the hexane recovery column. As the 
polyethylene passes through the separation and drying section, it is completely 
separated from solvent and takes a form of a powder. The polyethylene in 
powder form is fed to the pelletizing section to mix and stabilize the powder by 
a homogenizer. After that, the obtained powder is fed into a pelletizer to make 
polyethylene pellet. For the hexane recovery section, the hexane which contains 
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low molecular weight polymers is separated by a distillation column and the 
purified hexane is returned to the reactor as recycle. 

 

 

Figure 1   Simplified Schematic of polyethylene Plant 

As the key properties: melt flow rate (MFR) and density are either rarely 
available or at best available rather infrequently, neural network models have 
been developed to provide the estimates of those on-line based on available 
information such as temperature, flow rate and concentration. 

3. Neural network models for estimation of the polymer quality variables  

Neural networks (NNs) have been applied to nonlinear process 
modeling and control recently [4,5,6,7]. They have the ability of learning the 
behavior of the process and the relationships between variables, without having 
a model of the phenomenological underlying laws. In this work, multi-layered 
feed forward neural networks are used as on-line estimators to estimate the 
polymer quality variables. The feed forward neural networks are trained by 
Levenberg-Marquardt technique; they are fed with the actual available input-
output polymerization plant data obtained by both recoding on DCS 
(Distributed Control System) and analyzing samples in a laboratory on the 
actual plant. After training, the trained neural networks are validated by 
validation data sets. If the validation test is not satisfactory, the neural network 
requires more training by re-initializing the weights and biases. 

Here, four network models have been developed with respect to key 
process variables shown in Table 1. The Neural Network with two hidden layers 
structure has been chosen due to the complexity of the process. To achieve 
proper neural network training, a sufficient number of data points must be used 
depending on the complexity of the process. In this work, about 1,600 samples 
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are used for network training, and 200 samples for validation for modelling of 
four networks. The optimum structures of NNs are selected by the Sum of 
Squared Error (SSE) minimization method. The optimal configurations of the 
NNs that give the best estimates of the key properties on training and validating 
the networks are shown in Table 2. The obtained neural network models are 
then used as on-line estimator in the actual polyethylene plant.  

 
Table 1  List of major process variables of  model inputs and outputs  

Model No. Model inputs and outputs 

Model #1 
Inputs: H2 to C2 ratio , % H2 , C 3/C2,C4/C2 molar ratio (gas phase), temperature, 
pressure , ethylene feed rate , past data 
Output: MFR in the Reactor 1 

Model #2 
Inputs: H2 to C2 ratio , % H2 , C 3/C2,C4/C2 molar ratio (gas phase), temperature, 
pressure , ethylene feed rate , past data 
Output: MFR in the Reactor 2 

Model#3 
Inputs: H2 to C2 ratio of the Reactor 1 and Reactor 2, %H2 of the Reactor 1 and 
Reactor 2, C 3/C2,C4/C2 molar ratio (gas phase), temperature, pressure,  ethylene feed 
rate, temperature of powder , temperature of  resin in  pelletizer, past data  
Output: MFR of pellet 

Model#4 
Inputs: H2 to C2 ratio of the Reactor 1 and Reactor 2, % H2  of the Reactor 1 and 
Reactor 2, C 3/C2,C4/C2 molar ratio (gas phase), temperature,, pressure,  ethylene 
feed rate, slurry concentration, temperature of powder, temperature of resin in  
pelletizer, past data 
Output: polymer density 

 
 
Table 2 The configuration of the neural networks for estimation of the polymer quality variables 

Estimated polymer quality variables Obtained NN 
configuration 

MFR in the first polymerization reactor Model#1 = 11-5-3-1  NN 
MFR in the second polymerization reactor Model#2 = 11-7-3-1  NN 
MFR of polyethylene pellet Model#3 = 27-7-3-1  NN 
Polyethylene density  Model#4 = 25-11-9-1  NN 

4. Results and discussion 

The optimal network models with two hidden layers are chosen and in 
the on-line inferential system to provide the estimates of the MFR and the 
density of the properties in the actual plant with the frequency of one minute 
sampling interval. Figure 2 shows the estimates of the MFR in the Reactor 1 by 
11-5-3-1 NN models. It can be seen that the error between actual and output 
values in the first 1,000 data points are rather high due to the lack of past values 
of output data. Additionally, if operating condition or process variables lies 
outside the training range, the models usually provides bad estimates; neural 
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network models are rarely applicable to carry out extrapolations. After the first 
1,000 data points, the networks can  predict the MFR precisely. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 On-line estimation of MFR in   Figure 3 On-line estimation of MFR  
the Reactor 1  by  11-5-3-1 NN, in the Reactor 2 by  11-7-3-1 NN, SSE=1.4463 
 SSE=7.5617 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 On-line estimation of MFR of  Figure 5 On-line estimation of  
polymer pellet by  27-7-3-1 NN,  polyethylene density by  
SSE =0.58188 25-11-9-1 NN, SSE =54.1295 

 
The estimates of the MFR in the second reactor are almost identical to 

the actual data for the whole region (Figure 3). This shows that the 11-7-3-1 
model can be confidently used for estimation purposes. Figure 4 illustrates that 
with the feedback calculated outputs, the model can still provide good estimates 
of the MFR of polyethylene pellet even though the estimates of the MFR in the 
Reactor 1 and 2 are not good; the deviations between the NN outputs and the 
plant values are fairly high. For the estimation of polyethylene density shown in 
Figure 5, it gives excellent estimates of the density with respect to the actual 
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input data. This result, therefore, demonstrates that the neural network is 
applicable to estimate the trajectory of polyethylene density. 

 
For all cases, the influence of the learning sets is also considered 

because learning sets with redundant data during training usually lead to poor 
performance. This is because the networks will tend to overfit the given data 
and the output and then provide estimates which highly depend on the given 
data. However, there is still no formula to define the number of data points 
required to train neural networks. In addition, the number can be varied 
depending on the complexity of the problem and the quality of the data. 

5. Conclusions 

Polymer properties: the Melt Flow Rate (MFR) and the density can be 
used to classify their physical and chemical properties. Therefore, they are 
needed to be controlled at a defined set point. However, they are rarely 
available or measured with sufficient frequency in the control point of view. To 
overcome the lack of on-line measurement of this information without process-
model mismatch, neural network models based on actual input-output 
information of the process are used to provide the estimates of the MFR and the 
polymer density in industrial polymerization process. It was observed that the 
neural network models provide good estimates of both the MFR and the 
polyethylene density; the polymer properties obtained by networks have profiles 
almost identical to those gathered from the actual process. It should be noted 
that appropriate numbers of learning data and data range for training are 
required to achieve good models for the property inferential system. 
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