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Abstract 

Development of robust and efficient methods for the computation of multi-
phase systems has long been a challenge in both chemical and petroleum 
engineering as well as in materials science.  Several techniques have been 
developed, particularly those which apply the Gibbs free energy minimization. 
In addition to calculation of global equilibrium problems, practical process 
simulation would benefit from algorithms, where reaction rates could be taken 
into account. In the present work, the method of Lagrange multipliers has been 
used to incorporate such additional constraints to the minimization problem, 
which allow a mechanistic reaction rate model to be included in the Gibbsian 
multi-component calculation. 
  
The method can be used to calculate the thermodynamic properties of a multi-
phase system during a chemical change. The applications include computational 
materials science, industrial process modeling with known reaction rates 
combined with complex heat and mass transfer effects and studies of other non-
equilibrium systems. 
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1. Introduction 

Several industrial processes in the fields of chemistry, petroleum engineering, 
metallurgy, steel-making or e.g. in pulp and paper manufacturing include 
production stages, where chemical changes occur in true multi-phase fashion. 
The quantitative treatment of such processes is best performed with 
thermodynamic multi-phase methods. In a complex reactive system, where 
several phases can form, the minimum of Gibbs energy provides a general 
criterion for equilibrium calculations. Yet, many of the problems involve non-
equilibrium reactions and processes, for which the Gibbs’ian approach as such 
is not applicable. Consequently, there has been a search for ways to link 
reaction kinetics and multi-component thermodynamic calculations. 
While performing the Gibbs energy minimization the calculation is usually 
constrained by the mass balance of the closed system. As a result, the global 
equilibrium composition at a given temperature and pressure is reached. In what 
follows, a Gibbs free energy technique based on the extension of the 
(stoichiometric) conservation matrix of the Lagrange method is presented. The 
extension of the conservation matrix can be used to include reaction kinetic 
restrictions to control the extent of selected chemical reactions in terms of their 
reaction rates. 

2. Setting rate constraints into the Gibbs energy calculation 

2.1.  Gibbs free energy minimization by the Lagrange method 

The Gibbs free energy of the multicomponent system is written in terms of the 
chemical potentials as follows 
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where αμk   is the chemical potential of the species (k) in the respective phase α 
and α

kn  is its molar amount. The respective chemical multi-component system 
with N constituents, which are formed of l components can be described with a 
(N×l) conservation matrix A, the element of which is akj, defining the 
stoichiometry of component j in the respective constituent k.  
The minimization of the Gibbs free energy can be performed by using several 
alternative techniques [1-2]. Perhaps the most widespread mathematical routine 
is that of Lagrangian multipliers, where a new function (L) is defined in terms 
of the mass balance relations of the system components:    
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where λj‘s are the undetermined multipliers of the Lagrange method  and jφ  
represent the mass balances of the system components. Using these and the 
partial derivatives of the Lagrange function, the Gibbs energy minimum can be 
solved in terms of the equilibrium molar amounts at a given temperature and 
pressure. The Lagrange multipliers as well become solved representing the 
equilibrium chemical potentials of the system components [1,3,4]. Thus, for the 
chemical potentials of any constituent k there is: 
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Equation (3) gives the chemical potential of any constituent k as a linear 
combination of the respective potentials of the system components.  
The multi-phase system may also be reaction rate controlled or influenced by 
other stress- or field- related factors, in which case additional constraining 
equations are needed. It is often possible to find such extension of the 
conservation matrix by which a new Lagrangian multiplier can be used to solve 
the constraint potential in the multi-phase system [3]. 
The conservation matrix A′  of the additionally constrained system is made up 
of the coefficients of all conservation equations valid in the system. The rows of 
the matrix represent again its altogether N constituents. When merely chemical 
reaction equilibria are considered, the conventional stoichiometric relations 
determine the conservation of atoms of elements and electric charge and there 
are l respective columns for these. When additional conservation equations are 
required, the new constraint appears as an additional column (l+1) in the 
conservation matrix: 
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Here the matrix elements for the stoichiometric phase constituents are presented 
in the firs l columns and the additional column (l+1) represents the new 
conservation equation. Thus, the matrix element α

1, +lka = 0 for all those 
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constituents k, which are not affected by the additional constraint, whereas 
α

1, +lka is not zero for those constituents, which are affected by the said 
constraint.  The mass balance of the total system is not affected, if the molecular 
mass of the component Ml+1 is chosen to be zero.  
When using A′ , the solution of min(G) again results with equation (3), that is 
the chemical potentials of the constituents become solved in terms of the 
elements of the extended matrix and the respective Lagrange multipliers. There 
will be one new multiplier for each new constraint equation, and they then 
represent either physical factors such as the electrochemical part of a chemical 
potential or constrained affinities [3].  

2.2.  Systems with kinetically constrained reactions 

The above method can be used to conserve the amount of a species at its input 
value in a Gibbs’ian calculation. This value can then be algorithmically 
connected to a reaction rate, and a series of Gibbs energy calculations be 
performed where one or several species only change with a given reaction rate. 
If several conditions for kinetically constrained species are used, the (non-zero) 
affinities of the chemical reactions are derived by using equation (3) and the 
stoichiometric coefficients of reactants and products in the constrained system 
[5].  The result can be summarized in the following two equations: 
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where νk is the stoichiometric coefficient (positive for a product, negative for a 
reactant) for the species k in the reaction in question; l´ is the number 
components in the system including those defined for kinetic restrictions. 

2.3. Calculation of the rutilisation system with the Gibbsian method  

To avail the use of the method in a wide-spread thermochemical platform which 
utilizes the Lagrange multiplier technique, a further practical trick has been 
used. When e.g the program ChemApp [6] is applied as the free energy 
minimiser, the conservation matrix is usually given with constant 
(stoichiometric) coefficients. To enable constraining of forward and reverse 
reactions, the matrix is further extended by introducing a new row to control the 
desired reactions. For a single reaction, the rows can be denoted with R+ and R-
, as they are connected to the constraint component R with non-zero akj-values. 
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Both of them are defined as stoichiometric phases for system input definitions, 
but are not allowed to present in the calculated state of Gibbs energy minimum. 
For the formation reaction R+, akj =1 and for the decomposing R- , akj =-1. The 
respective connection to the actual species, which are kinetically conserved, 
must also have non-zero stoichiometric matrix elements. The standard chemical 
potentials, which appear as input data in the calculation, are set to zero for the 
phases R+ and R-.  More than one species can again be involved and the 
corresponding akj-values become defined by the actual reaction stoichiometry.  
 
Table 1. Data for the TiO(OH)2 calcination reactions (T = 1000 C) 

Reaction ΔH 
kJ.mol-1 

ΔG 
kJ.mol-1 

Reaction rate 
equation 

Ea 
kJ.mol-1 

A 
h-1 

TiO(OH)2 ↔ TiO2(An) + H2O↑ 43.5 -83.6 assumed 
equilibrium 

- - 

TiO2(An) → TiO2(Ru) 
(kinetically constrained reaction) 

-6.6 -5.9 ξ = 1-(1-k.t)3 

 
441.99 1.8E+17 

 
In Table 1., a simple system representing Titanium oxyhydrate [TiO(OH)2] 
calcination is described. From experience it is known that the H2O release from 
the oxyhydrate is a fast reaction at ca. 180 C. The anatase-rutile–transformation 
is a slow, yet spontaneous, solid state reaction, for which the rate constant (k) is 
known in terms of the activation energy (Ea) and frequency factor (A). In table 
2, the conservation matrix and its extension to include one reactive component 
R is presented. The shaded area shows the non-restricted equilibrium system. 
 
Table 2. Stoichiometric matrix for the kinetically constrained rutilisation system 

Species H2O TiO2 R 
H2O-gas 1 0 0 
TiO(OH)2 1 1 0 
TiO2(An) 0 1 0 
TiO2(Ru) 0 1 1 
R+ 0 0 1 
R- 0 0 -1 

 
In Figure 1, the time-dependent rutile [TiO2(Ru)] fraction ξ=ξ(t) is solved by 
using the constrained Gibbs energy minimization method. At each constant 
temperature the Gibbs energy appears as a monotonically descending curve 
(only the curve for 950 C is shown).  
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Figure 1. Use of a reaction rate constraint in a thermodynamic Gibbs energy system. The coupled 
model is also used to calculate the time-dependent exotherm of the rutilisation reaction. Reaction 
rate data is given in table 1. 

3. Conclusions 

The presented method can also be used to introduce more complex mechanisms 
into a multi-component calculation. The matrix A must be extended with one 
column and two rows for each kinetically constrained species [6]. Though the 
method was developed by using Lagrangian undetermined multipliers, the 
fundamental equations (3)-(6) derived from the extremum condition are strictly 
thermodynamic and do not depend on the mathematical method. Thus, a similar 
approach can be pursued for when applying other minimization procedures.  
The combination of reaction rates with the multi-component method enables 
direct calculation of the thermodynamic state properties during a chemical 
change. The obvious advantage of such models is the simultaneous and 
interdependent calculation of all thermochemical changes in the process, which 
opens new possibilities for advanced multi-phase simulation.   
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