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Abstract 
With the increasing emphasis on agile operations, the process industries have 
begun to focus on effectively managing transient operations such as transitions 
or batch/fed-batch processes. In this paper, we propose a multi-agent based 
decision fusion framework for monitoring and diagnosing faults during 
transitions. The proposed method integrates three fault diagnosis methodologies 
into a uniform and coordinated manner where collaboration among 
heterogeneous methods is enabled to achieve optimality in speed and accuracy 
of fault detection. We illustrate the efficacy of the proposed approach through a 
pilot-scale distillation unit startup case study. 
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1. Introduction to Transient Operations 

Increasingly, manufacturing facilities operate at a multitude of states and 
frequently switch between them. The switch from one state to another is termed 
as a process transition. Plant startups and shutdowns are common examples of 
transitions in the process and allied industries including refining, 
petrochemicals, paper & pulp, steel, and cement manufacture. Other transitions 
occur due to feedstock, throughput, or product slate changes as well as 
maintenance operations such as furnace decoking or absorber regeneration. 
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Transitions are also common in high-value added specialty and pharmaceutical 
plants which commonly operate in batch and fed-batch phases.  
From a monitoring perspective, transitions correspond to discontinuities in the 
plant operation such as change of setpoints, change of equipment configuration, 
turning on or idling of equipments, etc. Hybrid discrete-continuous behavior of 
the process therefore has to be considered when monitoring transitions. Multi-
time scale effects also become important where some variables change quickly 
(order of seconds) and others respond over hours. Though there exist some 
approaches in the literature for fault detection and diagnosis during transient 
mode of operations, i.e., see Qin (2003) [1], Chen and Liu (2002) [2], Ng and 
Srinivasan (2004) [3], the performance of most of these approaches is process 
dependant and inadequate in many instances. In this paper, using examples from 
a distillation-unit startup, we demonstrate a practically implement-able multi-
agent framework that performs effectively in a broad range of applications.   

2. Multi-agent Approach for Collaborative FDI 

Since each FDI method exhibits strengths and shortcomings that are process 
dependant, collaboration among heterogeneous methods is needed to bring forth 
the benefits of each FDI method, so that monitoring resolution and robustness 
of the FDI system can be brought to higher ground. Towards this end, each FDI 
method can be represented as an agent and the diagnostic results from multiple 
agents combined. Through this, the strengths of the different methods can be 
integrated while the drawbacks of the individual methods diminished through 
collaboration. Another key benefit of the multi-agent framework is that it 
enables efficient computational integration of high fidelity and complex FDI 
methods. These two aspects are the focus of this paper here 

2.1. Bayesian Fusion for Collaboration among FDI agents 

When multiple FDI agents are used in parallel, a conflict resolution strategy is 
needed to arbitrate among the contradictory decisions generated by the various 
FDI methods so that one consolidated solution can be presented to the plant 
personnel. In this paper, a Bayesian approach is used for this purpose. In 
general, the predictions from all diagnostic agents, rA , can be recorded in a 
confusion matrix as follows [4]: 
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 (Eqn. 1) 

where r
ijn , ]1[ Ji   =  and ]11[ += Jj   , indicates the number of samples 

belonging to class iC  that have been assigned to fault class j by Agent rA . The 
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diagonal elements of rCM are then the correct predictions from rA . The 
confusion matrix is computed for each FDI during the offline training stage.   
The information in rCM is utilized in real-time as follows: the conditional 
probability that implies jC∈x  given the evidence jAr =)(x  can be computed 
as [4]: 
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))(|( jCP rj =∈ xx κ  can be considered the confidence of a classifier 
regarding the assignment of sample x to class jC . When R FDI agents are 
involved, each has its own confusion matrix, rCM , ]1[ Rr   = , and R evidences 
are produced in real-time, )(),...,(1 xexee R= . Each FDI agent, rA , expresses its 
predictions supporting the proposition that jC∈x  in the form of conditional 
probability. The combined probability EP  that supports jC∈x  from the 
collaboration among the agents can then be written as:  
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 (Eqn. 3) 

Based on Eqn. 3, a sample x is classified into class j depending on the combined 
conditional probability. The class jC  with the highest 

jEP  can be selected as 
the optimal combined prediction: 
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Here, class J+1 flags a novel fault. 

2.2. Inter-Agent Communication in a multiprocessor environment  

Since most FDI algorithms are computationally expensive, a parallel 
implementation of the framework is essential for decision support in real-time. 
To realize this in practice, our agents use Message Passing Interface (MPI) for 
inter-agent communication [5]. So, the agents can be executed from various 
distributed processors (either distributed-memory or shared-memory systems). 
Agents communicate with each other by exchanging messages based on a 
purpose-designed ontology. A knowledge-base approach based on string 
recognition is used for ontology synchronization, where each class of agent has 
a vocabulary (list of strings) containing the queries the agent is capable of 
responding to. An agent can thus communicate with another by sending it 
appropriate queries within the latter’s vocabulary. An example of inter-agent 
communication is shown in Figure 1. 
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Figure 1: Inter-host message passing among heterogeneous FDI agents 

Suppose there are two agents, aA  and bA , where aA  intends to request bA  to 
perform a FDI task with task related information in dataset ix . The MPI 
message passing between aA  and bA  functions using a common 
communications folder. aA  first writes the message bufferA,Ψ , which contains 
data (information) for the task to be executed by bA , to the common folder. 
After the buffering of bufferA,Ψ  is completed, it creates a semaphore message, 

lockA,Ψ . The agent bA  continually checks the common folder for existence of 
semaphore lockA,Ψ . Once lockA,Ψ  is detected, bA  loads the message bufferA,Ψ  
and executes the requested tasks based on the data in bufferA,Ψ . With this 
message passing architecture, the agents can communicate freely across 
different hosts in a distributed agent-environment. One key benefit of 
distributed multi-agent framework is speedup of computationally demanding 
tasks by exploiting multiple processors. Two performance measurement 
indicators are used in this work to measure the benefit of speedup, namely, 
overall speed enhancement index, pS , and the overall system efficiency index, 

pE .  
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3. Case study 

In this section, the proposed multi-agent framework is tested using a pilot-scale 
distillation unit startup case study. We illustrate the benefits through integration 
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of three FDI methods – self-organizing map, SOM [6], nonparametric kernel 
density estimation, KDE approaches [7], and neural-networks, NN [8].  
 
The distillation-column considered in this case study is of 2 meters height and 
30 cm width. It is integrated with a control console and a data acquisition 
system. Cold startup of the distillation column with ethanol-water at 30% v/v 
mixture is performed based on a predefined standard operating procedures. All 
data used for training and testing of the MAS can be obtained from the 
distillation-unit case study homepage [9]. The multi-agent system was tested on 
a Linux cluster with 16 nodes (each containing 2 Intel® PentiumTM Xeon 
3.06GHz processors with 2GB memory). 

3.1. Results & Discussions 

DST05 corresponds to a sensor fault. The fault was introduced at t=4250s when 
the process approaches steady-state. Throughout this fault, all variables remain 
normal except for the affected sensor (Tray 6 Temperature Sensor). In this case 
study, the KDE agent, m

KDEA , fails to detect DST05. All faults are successfully 
detected and isolated based on the proposed multi-agent system with an average 
detection and diagnostic delay of 57.9 samples and 58.4 samples respectively. 
Average diagnostic delay based on single FDI approach is 110.6 samples 
(SOM), 86.9 samples (KDE), and 85.7 samples (NN). A minimum 
improvement of at least 31.86% is achieved in fault identification time by 
combining these three FDI methods compared to any one FDI method.  The pS  
and pE  observed using multiple processors are shown in Figure 2. The 
proposed MAS has been able to achieve a speedup of ~4.4x. Average 
processing time has been reduced from ~12s per sample to ~2.7s per sample 
during abnormal events (when high level of CPU flops are required). 
Table 2: Performance evaluation of each FDI agent and the proposed multi-agent approach (with 
best performance highlighted) 

FDI methods 
DSTs 

Identified 
Recognition 

Rate 
Avg Detection 

Delay 
Avg Diagnosis 

Delay 
Self Organizing Map 10 56.21 68.3 110.6 
Kernel Density Est. 9 66.32 67.9 86.9 

Neural Network 10 87.15 58.0 85.7 
Bayesian Combination 10 89.80 57.9 58.4 

4. Conclusions 

Fault diagnosis during transitions is challenging due to various complexities. By 
combining all three FDI agents (SOM, KDE and NN), the multi-agent approach 
is able to diagnose all ten disturbances with significant improvement in all 
criteria measured, i.e., recognition rate (↑3.04%), speed of fault detection 
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(↑3.27%) and diagnostic delay (↑31.9%), compared to a solitary FDI method 
(SOM, KDE or NN). The agent architecture can be naturally deployed on 
multiple processor clusters for computational performance improvements.  
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Figure 2: Speed enhancement and system efficiency measured on a Linux cluster 


