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Abstract 

The aim of this paper is to briefly present the Bond Graph language and the 
advantages that one can get from its use. The main point is the easy reusability 
of the sub-models that are the basis of a given model. The Bond Graph language 
has been firstly developed for the modeling of finite dimension systems in 
mechatronic and electrical engineering but it can also be applied to infinite 
dimension systems as well as to chemical engineering systems. Such an 
application is related to the concepts of irreversible thermodynamic. 
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1. Introduction 

The representation of dynamic models in chemical engineering by using graphs 
or networks has been already described [1,2]. Such an approach can be very 
efficient for model management. The model of a system can be manipulated as 
a set of interconnected and reusable sub-models, provided that softwares are 
available to support such a manipulation. The Bond Graph language is an 
example of this kind of tool. It is based on the energetic behavior of the sub-
models and their interconnection by using power conjugate variables. It has 
been mainly applied to finite dimension mechanical and electrical systems [3]. 
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It is supported by commercially available softwares (20-sim® developed by 
Controllab products, MS1 by Lorenz Simulation, CAMP-G from Cadsim 
Engineering or MTT, a free software licensed under the GNU General Public 
License) [4]. Extension of the Bond Graph language to infinite dimension 
systems has been published [5] as well as applications to chemical engineering 
problems [6-8]. In this domain, one has to use the entropy as the power 
conjugate variable associated with the temperature, according to 
thermodynamic concepts [8,9]. In this paper, we briefly present the Bond Graph 
language and the way transport phenomena equations can be represented. 

2. The Bond Graph language 

A Bond Graph is based on multi-port elements related by one- or multi-bonds 
represented by oriented half arrows. With each bond is associated a set of power 
conjugate variables, the effort variables ek  and the flow variables fk . As far as 
fk  is the flux of the extensive variable qk , ek fk  is an energy flux or power 

associated with the energy form k [3,11]. The C capacitive element is associated 
with the accumulation of the energy  H  as well as with the accumulation of the 
extensive variables qk . The balance equations defining the C element as well 
as a graph example are as follows: 
 
 
  (1) 
 
 
The 0 and 1 junctions represent the transport of the extensive variables as well 
as of the energy through the graph (εk = 1,−1{ } is a sign convention):  
 
 
  (2) 
 
 
 
The 0 junction represents the continuity of the power and flow variables while 
the effort variable is common to the bonds. The 1 junction represents a relation 
between the effort variables and the flow variable is common to the bonds. The 
resistive element RS is dissipative:  
  
 (3) 
 
 
It represents the power loss Tσ s due to irreversible phenomena where the  
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power conjugate variables σ s  and T are respectively the total entropy 
production and the temperature [9]. Relations between efforts and fluxes, that 
may be coupled, are given by the φ  function. 
Finally we introduce a key element for distributed parameter systems modeling: 
the multi-port differential transformer element or DTF [5] which is a power 
preserving structure permitting to express interconnection between the power 
conjugate variables within the system Ω  and at its boundary ∂Ω . This element 
is the generalization of the transformer element TF [3] and is based on the 
Stoke’s theorem: 
 
 
                                                                                                                           (4) 
 
 
 
The general notation d stands for the gradient or the divergence according to the 
nature of the variables that are manipulated.  

3. Bond graph representation of transport phenomena 

3.1. Energy conjugate variables for the unit of mass of a thermodynamic system  

The total energy per mass unit   =  is given by 
  
= =

v2

2
+ u  that one can 

differentiate: 
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v = v  is the velocity modulus, u  and p  the internal energy  and the 
momentum per mass unit. In equation (5), the conjugate variables associated 
with the kinetic energy are the velocity and the momentum per mass unit. The 
Gibbs equation defines the energy conjugate variables for the internal energy 
[9]. μi  is the chemical potential of the i component, ωi  its mass fraction, s and 
v  are the entropy and the volume per mass unit. According to the Bond Graph 
approach, a balance equation is expressed for the extensive variables associated 
with the quantities per mass unit p ,s,v,ωi( ). 
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3.2. Balance equations for the extensive variables 

These balance equations are written by using the substantial time derivatives 
defined with respect to v  which turns to be the mass average velocity [10]: 
 

 ρi
i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ v = ρv = f i

i=1

N

∑  (6) 

 
f i = ρivi  is the mass flux of component i, ρi  its mass concentration and vi  its 

velocity with respect to a fixed frame. The extensive variables balances are then 
as follows: 
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ρvp , ρvωi  and ρvs are the convected fluxes of momentum, component i and 
entropy. Relative fluxes are then defined with respect to these convected fluxes. 
φp

R = φp − ρvp = PΙ + τ  is the relative momentum flux where P is the pressure 
and τ  the viscous part of the momentum flux (or shear stress tensor). 

f i
R = f i − ρvωi  is the diffusion flux and fs

R =
fq
T

+ fiRsi
i=1

N
∑  is the relative 

entropy flux where fq  is the heat flux by conduction and si  the partial entropy 
per mass unit. σ i  is a source term for the component i due to chemical 
reactions. By adding the components mass balances over all the species 
(equations (7d)), one finds the global space balance (7c) without any source 
term since it is a conserved quantity. As far as the momentum is also a 

conserved quantity, f i ⋅ gi
i=1

N

∑  is an exchange of momentum with the 

surrounding due to the external body force gi  exerted on the mass unit of 
component i. According to the second principle of thermodynamic [9], the 
entropy source term σ s  corresponds to a true creation of entropy: 
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where : is a tensor product [10]. Tσ s is a volumetric dissipated power due to 
irreversible processes that are considered, respectively in the RHS of equation 
(8), heat transfer, mass transfer, chemical reactions and viscous effects. 

3.3. The assumption of local equilibrium 

At a sufficiently small scale, equilibrium is reached at each time and the 

substantial times derivatives 
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The energy conservation (9) is deduced from equations (7) and (8) where the 
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3.4. Example 

Let us consider the Bond Graph represented below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is an isochoric system only subject to diffusive heat and mass transfer 
corresponding to equations (7b) and (7d). These two irreversible phenomena are 
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represented by two RS elements. The fluxes constitutive equations are assumed 
to be decoupled: the entropy flux fs is given by the Fourier law while the 
diffusion fluxes vector f  is related to the chemical potential gradients. The 
bonds connected to the DTF elements represent the boundary conditions.  

4. Conclusions and perspectives  

The above-described Bond Graph a) can be encapsulated in the form b) in such 
a way that it can be connected to another Bond Graph only through the external 
ports. Provided that softwares are available, one can easily manipulate and re-
use sub-models and connect them through these ports. 
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