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Abstract 

In last 12 years, Clustering has received much interest for Process Engineering 
problems. Particularly, the combination of fuzzy clustering with multivariate 
statistical techniques for Process Supervision Strategies (PSS) has been studied. 
The above has led to several approaches. However, some clustering associated 
problems has been ignored. Also, existing PSS have not been compared. In this 
work, Clustering based PSS (CPSS) are briefly reviewed and a comparison of it 
is made. This comparison incorporates some novel strategies that adequately 
treat some identified problems and it is illustrated through several case studies. 
The results shows the improvements reached with the proposed strategies. 
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1. Introduction - Clustering for Process Supervision Strategies 

Clustering is very popular because offers the chance to obtain information of 
previously undetected groups from data. The number of proposed clustering 
techniques is high1,2. Their capacities have been explored to support problems 
of processes supervision. The reported Clustering based Process Supervision 
Strategies (CPSS) can be grouped as: 
• MSTFC strategies: Multivariate Statistical Techniques (MST), like Principal 

Component Analysis (PCA), are used to obtain Reduced Representations of 
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Data Process (RRDP). Then, RRDP are analyzed with Fuzzy Clustering (FC) 
techniques like Fuzzy C-Means (FCM), or Credibilistic FC (CFCM) 3,4,5. 

• SACP strategies: The original data set is divided in groups according to an 
operational (batch sizes) or a supposed (expected time length faults) 
criterion. Then, PCA is used to obtain a model of each group. Finally, a 
PCA-based index (SACP) is used to measure the similarity among groups 6,7.   

• ANN strategies: They are similar to MSTFC because an initial RRDP is 
obtained (usually with PCA). Then, ANN like Self-Organizing Maps (SOM) 
or Adaptive Resonance Theory 2 (ART2) are used to analyze the data8,9. 

After a detailed revision of the above approaches, it can be observed that: 
• Existing strategies are useful to identify operating regions from historical 

data. This information is potentially useful to design fault detection/diagnosis 
systems, to monitor multi-operational processes, to discover causes of past 
poor performance and so on. 

• All clustering techniques are recognized as very sensitive to noise and 
outliers in Data mining literature 1,2. The problem of noise has been 
addressed but nothing has been made with regards to the outliers. 

• ANN based clustering highly depend on different parameters. Also, training 
efforts are frequently high in terms of computing time. The above problems 
noticeably limit their use within CPSS. 

• SACP strategies are basically useful for cases where data can be divided in 
groups of equal size. 

• MSTFC have been the most explored and applied. 
• Comparative studies are needed to establish the real advantages among 

existing approaches. 
In following sections, a comparative study between CPSS is summarised. Only 
MSTFC are considered for being the most studied in the literature and 
successfully tested on industrial scenarios. 

2. Combining PCA and Fuzzy Clustering for CPSS -  MSTFC strategies 

2.1. Fuzzy Clustering 

In Fuzzy Clustering (FC) it is considered that an object can be a member of 
different classes at the same time. The classical FC technique is FCM. It is 
based on minimizing the sum of squared Euclidean distances between data (Xk, 
k=1,… n) and cluster centers (vi, i=1,… c). 

Min  
2

1 1( , ) ( )mc n
i km ik k iJ U V x vμ= == −∑ ∑  (1) 

where 1≤m≤∞ is the fuzziness index and c is the number of clusters. The 
obtained fuzzy c-partition is constrained as follows: 
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So, FCM identify the center of clusters and calculate membership values (μ) of 
each data case (k) to each cluster (i). Further FC approaches have been proposed 
to solve some problems of FCM like handling of clusters with different forms 
(Gustaffson-Kessel or FCMGK), improving identification by using typicality (τ) 
instead of membership (Possibilistic C-Means or PCM), and ensuring good 
identification in front of outliers (CFCM and Fuzzy PCM or FPCM). 

2.2. MSTFC strategies 

MSTFC strategies for process supervision are discussed in section 1. The basic 
scheme of them is: 1) Initial data is dimensionality reduced with PCA4; 2) 
Scores from PCA are analyzed with an FC technique; 3) Plots, validation index1 
and tables are used to analyze the extracted knowledge.  

3. Comparison of MSTFC strategies 

In this section, a comparison between MSTFC strategies is presented. Different 
issues are studied (see section 3.2 and 3.3). MSTFC reported in the literature are 
considered: PCA combined with FCM (FCMPCA), PCM (PCMPCA) and CFCM 
(CFCMPCA). The FPCM technique, is also used in combination with PCA 
(FPCMPCA). Some additional strategies consisting on versions of the above 
MSTFC but using an adaptive norm distance as it is proposed by Gustafson and 
Kessel or GK (FCMGKPCA, CFCMGKPCA, FPCMPCA) are also considered. 

3.1. Four case studies 

The first two cases (E1 and E2) consist of two dataset with two variables. Case 
3 (E3) is a CSTR reactor6 used to produce a single product with different 
quality degrees. Case 4 (E4) is a chemical plant with recycle10. It suffers a little 
change in operating conditions during a long time interval. The clusters number 
c is know (4 in E1; 3 in E2; 3 in E3; 2 in E4).  

3.2. Evaluating the partition estimation with different MSTFC 

Here, the performance of different MSTFC is evaluated in terms of the quality 
of estimated clusters. Two validation index are used: 
• Cluster Purity (Pk)6: For data divided into k clusters, P tries to characterize 

the purity of each k in terms of how many operating windows or data points 
of a particular condition are present in that cluster. 

• Cluster efficiency (ξk)6: It is used to characterize the extent to which an 
operating condition is distributed in different clusters. 
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Datasets from each Ei are processed with MSTFC. Pk and ξk are computed for 
each cluster k and also their average (Pm and ξm). The results are shown in tables 
1, 2 and 3. Because of similar results with E1, table for E2 is not shown.  
 
Table 1. Validation of clustering results for E1 case. 

 Purity Efficiency 
 Pm ξ m P1 P2 P3 P4 ξ 1 ξ 2 ξ 3 ξ 4 

FCMPCA 99 99 97 97 100 100 100 98 98 100 
FCMGKPCA 99 99 97 100 100 100 100 98 100 100 
PCMGKPCA 74 84 63 62 100 72 58 88 100 92 
CFCMPCA 98 98 98 100 97 98 100 98 96 100 
CFCMGKPCA 99 99 100 100 97 100 100 98 98 100 
FPCMPCA 99 99 100 100 97 98 100 98 98 100 
FPCMGKPCA 99 99 100 100 97 100 100 98 100 100 

 

  

Figure 2a. Partition of E4-FPCM. Figure 2b. Partition of E4-FPCMGK. 
 
From these tables can be easily concluded that FCMGKPCA, CFCMGKPCA, 
FPCMGKPCA leads to better partition estimations. This is because the restriction 
imposes by the use of Euclidian distances (only clusters of spherical forms can 
be detected) disappears when an adaptive norm distance approach (GK 
modification) is adopted. The above is shown in fig. 2a and 2b. 
 
Table 2. Validation of clustering results for E3 case. 

 Purity Efficiency 
 Pm ξ m P1 P2 P3 ξ 1 ξ 2 ξ 3 

FCMPCA 87 69 83 78 99 58 51 99 
FCMGKPCA 99 100 99 98 100 100 100 100 
PCMGKPCA NaN 97 100 54 NaN 91 100 100 
CFCMPCA 86 69 98 83 78 58 51 99 
CFCMGKPCA 99 100 98 100 99 100 100 100 
FPCMPCA 87 69 83 99 78 58 51 99 
FPCMGKPCA 99 100 99 100 98 100 100 100 
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It is observed that PCMGK tends 
to produce unsuitable results in 
many cases. This observation is 
important since in previous works3 
the utility of a similar technique 
for monitoring of a specific 
problem was reported. 
Nevertheless, when it is evaluated 
on different case studies the 
performance is not always good.  

3.3. Handling of outliers. 

In the above comparison it was assumed that datasets are free of outliers. Now, 
outliers are considered. Only, the best MSTFC from section 3.3 are used. 
Furthermore, following extensions of MSTFC strategies are proposed and used: 
 
1.  The available process data 

matrix, X, is used to obtain a 
PCA model. 

2.  Scores from the above model 
are processed with the choose 
FC technique. 

3. Depending on the choose FC, 
an up measurement is 
computing (see table 4). 

4. Similarly to limits for the SPE and T2 statistics in PCA6, a uplim is computed. 
This limit is based on the empirical distribution of upi. 

5. If upi > uplim , the corresponding observation "i" is rejected as an outliers. 

3.3.1. Evaluating the performance of the OutMI methods. 

The performance of the OutMI is set through two proposed index, the Outliers 
detection Efficiency (ODEf) and the Good Data Eliminated (GDE). 

( )f (%) 100%ODE Nodr Not= ⋅  (3) 
( )(%) 100%GDE Nod Nodr n= − ⋅  (4) 

Where Nodr represents the number of outliers detected with an OutMI; Not 
represents the real number of outliers presents in the dataset; Nod is the number 
of good observations incorrectly detected as outliers; n is the total number of 
observations. If all the outliers are detected with an OutMI, the corresponding 
ODEf will be highest. GDE is compared with Pot (real percentage of outliers in 
data). So: 

Table 3. Validation of clustering results for E4 case 
 Purity Efficiency 

 Pm ξ m P1 P2 ξ 1 ξ 2 
FCMPCA 67 55 62 72 53 58 
FCMGKPCA 100 100 100 100 100 100 
PCMGKPCA 99 99 97 100 98 100 
CFCMPCA 67 56 72 62 53 58 
CFCMGKPCA 100 100 100 100 100 100 
FPCMPCA 67 55 72 62 53 58 
FPCMGKPCA 100 100 100 100 100 100 

Table 4. up measurements.
OutMI MSTFC Strategy upi 
OutM1 FCMGKPCA ,1 ,2 ,i i i i cup μ μ μ= ⋅ ⋅ ⋅…  
OutM2 CFCMGKPCA 1( 0.01)i iup ψ −= +  
OutM3 FPCMGKPCA ,1 ,2 ,i i i i cup μ μ μ= ⋅ ⋅ ⋅…  
OutM4 FCMGKPCA ,1 ,2 ,i i i i cup d d d= ⋅ ⋅ ⋅…  
OutM5 CFCMGKPCA 1

1 ,( 0.01)c
ki i kup d −
== +∑  

OutM6 FPCMGKPCA 
,1 ,2 ,i i i i cup d d d= ⋅ ⋅ ⋅…  
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• If GDE>Pot, the OutMI has erroneously classifying good data as outliers. 
• If GDE=Pot, the OutMI has only identifying outliers. 
 
From table 5, it is 
clearly seen that no 
one of the methods 
are good for 
handling the case 
E2. even so, 
OutM4 and OutM6 
methods are good 
for applying 
clustering together with good handling of outliers data. 

4. Conclusions 

In this work, a review of CPSS approaches has been summarized. Still more 
important, a comparison between different CPSS approaches has been made. 
The modified approaches included in this comparison allow improving some 
problems of current CPSS.  
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Table 5. Performance of Outliers identification methods. 
E1 E2 E3 E4  ODEf GDE ODEf GDE ODEf GDE ODEf GDE 

OutM1 33 1.1 0 0 25 2.3 100 1.6 
OutM2 66 0,6 100 0 25 0.8 50 0.1 
OutM3 66 1.1 100 0 50 2 100 1.7 
OutM4 100 0.6 25 3.3 100 0 100 0.1 
OutM5 0 1.7 25 6.5 0 0.8 0 1.5 
OutM6 100 0.6 25 3.3 100 0 100 0.1 


