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Abstract 

The aim of this article is to determine the effective diffusion coefficient in 
turbulent incompressible fluid flow with axial symmetry. To determine 
eigenfunctions and eigenvalues of a Sturm-Liouville problem, we use spectral 
Galerkin method and first kind Bessel function. The proposed calculation 
method may be also easily adapted to other movements with axial symmetry.  
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1. Introduction 

Many practical applications require the determination of the distribution of the 
concentration in the mixing area between two miscible moving fluids. Such an 
example is constituted by the succesive transport of the oil products. The 
reciprocal contamination of these two fluids is produced, in the case of laminar 
regime, both due to the molecular diffusion and to the convective diffusion. In 
turbulent regime, besides these two phenomena, we also observe the turbulent 
diffusion caused by fluctuations of the velocity. An approximate solution for the 
laminar regime can be found in [1,2]. 
Starting from the differential equation of the average concentration c for the 
miscible fluid flow through tubes with circular section in turbulent regime: 
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in [3] the following dimensionless expression is established for the effective 
diffusion coefficient 
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In formula (1) t is the time, x the spatial coordinate along the tube axis, r the 
radial coordinate, v0 the maximum velocity, f(r) the velocity distribution 
function in tube cross-section and Dr the diffusion coefficient in radial direction. 
In formula (2) D is the molecular diffusion coefficient, D0 a reference value of 
Dr, r0 is the tube radius, P0 is the Péclet number of molecular diffusion and 
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r

=ρ  (3) 

 
is the dimensionless radial coordinate. 
The functions nΦ  and the numbers nλ  are the eigenfunctions and eigenvalues 
of singular Sturm-Liouville problem [4]: 
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where 
 

0/ DDD r=ρ . (6) 

 
It easy to see that the first eigenfunction is one and the first eigenvalue is zero. 
These values are not used in formula (2). 
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To use formula (2) the eigenfunctions and the eigenvalues of eq. (4) and (5) 
must be determined. Unfortunately, these values cannot be determined exactly, 
so there must be used approximate methods. 
To approximately determine the eigenfunctions and the eigenvalues of this 
singular Sturm-Liouville problem we use the spectral Galerkin method. The key 
for efficient implementation of this method is to choose appropriate basis 
functions. In this article the basis functions (a complete functions system of 
L2[0,1]) are made of Bessel functions of first kind and zero order. 
The article is structured as follows: in section two we formulate the 
mathematical problem, section three presents the algorithm for determination of 
eigenvalues and eigenfunctions and the last section will contain some 
approximate solutions of the problem and some numerical results. 

2. The Mathematical Problem  

In the case of tubes, the turbulent diffusion in radial direction is different from 
the one in axial direction. That is because in axial direction the convective 
diffusion prevails, hence the turbulent diffusion in axial direction can be 
neglected. Under the given conditions, the diffusion coefficient in radial 
direction is: 
 

rtr DDD +=  (7) 

 
where Drt is the turbulent diffusion coefficient in radial direction. For this 
coefficient, G. I. Taylor [5] proposed the expression: 
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To calculate function f(r) the logarithmic law is used [6]: 
 

( ) ( )00 /1ln/5.21 rrvvrf −⋅⋅+= ∗ , (9) 

 
where ∗v  is the friction velocity [6]. 
Using (6), (7), (8) and (9) we obtain finally: 
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where 
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With these formulae eq. (4) becomes: 
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3. The Galerkin Method 

For the determination of eigenfunctions and eigenvalues of Sturm-Liouville 
problem (12), (5) we will apply the Galerkin method. For this we consider the 
bilinear forms a and b defined on H1(0,1)×H1(0,1) 
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We look for the eigenpair (λ, Φ) which satisfies 
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Equation (15) is called a variational formulation of Sturm-Liouville problem 
(12), (5) [7]. 
We look for the solution of (15) under approximate form 
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where the numbers αn are the roots of equation 
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m is the approximation level of functions Φn; J0 and J1 are the Bessel functions 
of first kind, zero order and first order, respectively. 
The unknown coefficients ak are calculated by solving the homogeneous linear 
system: 
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The solutions of the equation: 
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are the approximate values, for the m approximation level, for the first m 
eigenvalues of Sturm-Liouville problem (12), (5). 

4. Approximate Solutions and Numerical Results 

By using (16) we obtain for the effective diffusion coefficient the approximate 
formula: 
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For m=1 this formula becomes 
 

( ) ( )[ ]2
1,11,001,1

00
2
1,1

2
1,0

6
1

2
0 403.0302.6

081.0
2

aavra
Dvaa

vP
⋅−⋅⋅−⋅⋅

⋅⋅⋅+⋅

⋅⋅
= ∗

∗

λ
κ  (21) 

 
The eigenvalues 
 

DDnn /0
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of Sturm-Liouville problem (12), (5) are presented in table 1. These eigenvalues 
are obtained for level nine of approximation. 
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Table 1 The eigenvalue for the Sturm-Liouville problem 

h 2
1μ  2

2μ  2
3μ  2

4μ  2
5μ  2

6μ  2
7μ  2

8μ  
0.001 14.68 49.22 103.51 177.55 271.33 384.85 518.12 671.13 
0.01 14.71 49.31 103.68 177.83 271.75 385.44 518.91 672.14 
0.1 15.00 50.13 105.33 180.59 275.92 391.32 526.78 682.32 
1 17.87 58.29 121.57 207.77 316.90 448.97 603.99 781.96 
5 30.40 93.28 190.29 321.86 488.13 689.20 925.09 1195.9 

 
Formulae (23) and (24) contain some eigenfunctions calculated for the same 
level of approximation and for 2.0=h . 
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The integrals (13) and (14) are calculated by using the Gauss-type quadrature 
rules. The main advantage of the method presented here is that the coefficients 
of the system (18) can be easily handled without extra effort, while its main 
disadvantage is that the corresponding linear system has full matrix. We used 
numerical algorithms and programmes in Pascal to determine the eigenvalues 
and eigenvectors of Sturm-Liouville problem [8]. The algorithms proposed here 
are stable and offer a good  precision even for a low level of approximation. 
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