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Abstract 

The starting values considered for the model parameters strongly affect standard 
techniques for experimental design. When these values are far from the optimal 
ones, poor quality experiments are achieved or several steps are required 
resulting in a large experimental burden. Here, a novel criterion based on global 
sensitivity analysis, and therefore independent of the parameters values, is 
presented. In order to illustrate the performance of this methodology, a semi-
continuous bioreactor is considered as a case study. 
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1. Introduction 

In the last decade, the use of optimal experimental design has gained world-
wide acceptance as an essential tool for improving the quality and efficiency of 
model identification and parameter estimation. Optimal experimental design 
(OED) allows the identification of a set of experiments with conditions and 
sampling schemes that deliver data from the measured variables that are the 
most sensitive to the unknown parameters. One of the common ways to design 
experiments is to use scalar functions of the Fisher’s Information Matrix (FIM) 
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evaluated at the nominal values of the parameters. This information matrix is 
founded on the local sensitivity coefficients of the response variables computed 
for each of the sampling points. Therefore, the results of a FIM based OED 
depend on the nominal values used for the parameters and the behaviour of the 
response function is described only locally in the input space. Moreover, 
preliminary experiments and model calibration tests should be carried out in 
order to obtain a first guess for the parameter values and an iterative scheme 
involving both steps is required [1]. In addition, these linear methods are not 
sufficient for dealing with complex OED problems, especially those in which 
there are nonlinear interactions between parameters. 
In this work, a methodology based on global sensitivity analysis (SA) for 
increasing the parameters’ precision and/or decorrelation is presented. It 
consists of the minimisation of a criterion based on the Sobol’ global sensitivity 
indices [2] using a stochastic global optimisation method leading to an optimal 
vector of input variables. This novel approach is here applied to a case study 
concerning a fed-batch reactor where a first order reaction takes place and it is 
used for devising the experimental conditions (dilution factor and feed substrate 
concentration) which allow the estimation of the reaction rate and the activation 
energy with the best possible statistical quality. The results obtained 
demonstrate its ability to reduce the quantity of experimental work required and 
illustrate the need for global SA techniques for the design of reliable dynamic 
experiments. 

2. Problem Statement 

Mathematically, the optimal experimental design problem can be formulated as 
a general dynamic optimisation problem where the objective is to find a set of 
input variables (controls) for the dynamic experiments that optimise some 
functional related with the efficacy of the experiments with respect to the 
parameter identifiability and the estimation accuracy expected from the 
collected data. This is subject to the dynamics of the system (e.g. state-space 
model), initial and boundary conditions and possible other algebraic constraints 
related to experimental limitations. To mathematically represent the time-
varying controls, the control vector parametrisation (CVP) technique that 
approximates them using low order polynomials has been widely used [1]. 
Regarding the cost function, several scalar functions of the FIM evaluated at the 
nominal parameters have been suggested in the literature [3]. The limitations of 
this method arising from its local and linear nature provide an obvious 
motivation to devise an approach non-dependent on the value of the parameters 
avoiding the iterative procedure and decreasing considerably the experimental 
burden. 
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3. Methodology 

In this work, the Sobol’ sensitivity indices method has been implemented in 
Matlab. This method allows for the computation of the global sensitivity indices 
(SI) that consider the effects of changing parameters simultaneously while 
spanning the entire admissible region of the parameter space. They are defined 
as the ratio: 
 

D
D

SI s
s

,...,1
,...,1 = ,       (1) 

 
where D1,…,s is the partial variance in the model output associated with 
simultaneous changes in parameters 1-s and D is the total variance [2]. Fist-
order sensitivity indices (SIp) account for the sensitivity of the individual 
parameters and second (SIrp) and higher-order (SIr,…,p) sensitivities account for 
the effects of interactions of two or more parameters. 
To increase the precision of the parameter estimates we should seek for 
increasing the variance associated with the individual parameters while 
reducing the interactions (higher order sensitivities) [4]. Analogous to the well 
known FIM, we suggest the use of a matrix that we call GSIM (Global 
Sensitivity Information Matrix) based on these first-order SI defined as: 
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where ( )ips tSI ,  measures the sensitivity of the state sy  with respect to the 
parameter pθ  at the time it  and iW  is a weighting matrix usually chosen as the 
measurement error covariance matrix. The optimisation can not usually be 
carried out in a matrix sense, but a scalar measure must be employed. For that 
reason, the maximisation of the determinant of the GSIM was considered as the 
performance index: 
 

( )GSIMJOED det=        (4) 
Due to the non-smoothness of the cost functions, the use of gradient-based 
methods to solve this NLP might lead to local solutions. Stochastic methods of 



4  M. Rodriguez-Fernandez et al. 

global optimisation were presented as robust alternatives for OED. For this 
study we have selected SRES [5] which is one of the most competitive 
algorithms available, with the additional advantage of being able to handle 
arbitrary constraints if needed [6]. 
In order to asses the precision of the estimated parameters, a Monte-Carlo based 
method was used for the calculation of their confidence intervals. To perform 
the analysis, a large number of pseudo-experimental data are generated. Due to 
measurement noise, each simulation leads to a slightly different set of data and 
therefore to a different set of estimated parameters. The statistical properties of 
the resulting distribution are then studied providing a better approximation of 
the confidence intervals than the standard FIM method [7] 

4. Case study 

To illustrate the performance of the proposed approach, we have considered a 
fed-batch fermentation process. Assuming Monod-type kinetics for biomass 
growth and substrate consumption, the system is described by the following set 
of differential and algebraic equations (DAEs) [1]: 
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where: 
• iθ , 2,1=i : parameters to be estimated, [ ] ii ∀∈ 98.0,05.0θ , 

• 1u : dilution factor allowed to vary between 0.05 and 15.0 −h , 
• 2u : feed substrate concentration allowed to vary between 5 and lg50 , 
• 1y : biomass concentration. Initial value: ( ) lgty 1001 = , 
• 2y : substrate concentration. Initial value: ( ) lgty 1.002 = , 
• mr : reaction rate. 
In this study, the goal of the experimental design is to devise a 10 hours 
duration experiment, take up to 10 samples at equidistant times and measure the 
biomass concentration, y1, and the substrate concentration, y2, in each sample 
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using a High Pressure Liquid Chromatograph (HPLC). The dilution factor and 
the feed substrate concentration may be varied every 2 hours. 
The OED problem seeks to provide the vector of values for the piecewise-
constant time varying controls (feed flow rate for the dilution factor, u1, and the 
feed substrate concentration, u2) at each control step that yield the best possible 
information for the subsequent estimation of the two parameters. Other 
statements involving several experiments and/or the time horizon and sampling 
times as control variables could also be considered. 

5. Results 

The input profiles for u1 and u2 obtained from the maximisation of the 
determinant of the GSIM using SRES are shown in Figure 1. The required 
computational time on a 3.2 GHz Pentium 4, 2.00 GB RAM was 67 h. 
From this design and taking arbitrary values for the parameters 
( 1 0.5θ = , 2 0.5θ = ), pseudo-experimental points were generated with relative 
normally distributed error of 5 % (see Figure 2). 
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Figure 1.- Optimal input profiles. 
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Figure 2.- Pseudo-experimental data. 

The data were then considered for the estimation of the parameters by 
optimising the maximum likelihood function and the 95% confidence intervals 
were evaluated using a Monte-Carlo method. That led to 1 0.5 0.05θ = ± , 

2 0.5 0.08θ = ± . The histograms obtained are presented in Figures 3-4 showing 
that both parameters θ1 and θ2 were estimated accurately. 
Note that, the values of the parameters have been taken randomly and were not 
used for the experimental design. We have verified that equivalent results are 
obtained with this design for any combination of parameter values. 
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Figure 3.- Confidence interval for θ1 
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Figure 4.- Confidence interval for θ2 

6. Conclusions and future work 

In this work, a novel technique for computing optimal inputs for experiments 
has been presented. The method makes use of the matrix of global SI for each 
individual parameter in order to increase parameters’ precision for any value 
within defined bounds. The capabilities of this methodology have been 
illustrated with a typical semi-continuous bioreactor model. Although the 
computational time required for each function evaluation is higher than for the 
traditional approach, this technique does not involve extra experimental effort 
needed by the traditional one. In order to reduce the computational time, the use 
of the Morris method [8] for computing the SI will be considered in the near 
future. Moreover, the application of different scalar functions of the GSIM and 
their influence on the experimental design is being studied. 
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