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Abstract 

Decision support systems represent specific form of control systems that help 
decision-makers to identify and solve problems, complete decision process 
tasks and make non-trivial decisions. In context of the process industries the 
decision support system (DSS) can help plant operators and engineers to deal 
with complex tasks like process monitoring, fault detection and diagnosis, data 
analysis or process optimization. The paper describes specific concept of a data-
driven decision support system that leverages the principle of lazy learning, 
which builds predictive models locally in the nearest neighborhood around 
given point of interest. The methodology of memory-based regression, 
classification, novelty detection and optimization is described along with 
possible applications in the process industries. 
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1. Introduction 

The general concept of decision support systems is defined very broadly. The 
architectural and functional complexity of DSS can range from relatively 
straightforward tools for answering simple queries, to much sophisticated 
systems that allow high-level modeling of what-if scenarios.  
The most frequently referred types of DSS systems are rule-based, model-based 
and data-driven. [8] The major differences are given by the way how data and 
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knowledge are stored and processed. Given that efficient database and data 
warehousing technologies have become nowadays a commodity the interest 
naturally increases in data-driven DSS. [6] 
The process industries represent a specific challenge for applications of data-
driven systems. Firstly, in the process industries the target users are frequently 
process engineers and operators who usually need very fast advisory service. 
Secondly, many industrial processes are rather complex and behave according 
to underlying non-linear physics. Other challenges can be introduced by fast 
process dynamics and operation in multiple distinct modes. Thirdly, the process 
automation requires significant amounts of parameters to be measured with a 
short sampling interval. Given the advances in modern sensor technologies the 
industrial processes can be equipped with numerous measurement devices at 
affordable cost, and as a consequence, there easily can be huge amounts of data 
collected and stored in the plant historian databases. Finally, many of the 
measured process variables are highly correlated because of redundancy of 
measurement, interacting base level control loops, and physical phenomena like 
mass and energy conservation laws. 
The most comprehensive development programs focused on bringing DSS tools 
to the process industries include the work done within the Abnormal Situation 
Management consortium [4] [7], and also the CHEM project [3] that was 
executed under the Fifth EU Framework Programme. Both these activities 
addresses similar problems including process monitoring, event detection and 
diagnosis, alarm management, and operator’s advisory in general. Each program 
separately yielded a number of tools that can be combined together in various 
supervisory applications. 
The aim of the paper is to describe the methodology and applications of an 
integrated data-driven decision support system that is being developed in 
Honeywell Prague Laboratory. The paper is divided into two parts. Key features 
and technology foundation of this specific DSS implementation are summarized 
in Section 2, which is followed by Section 3 that provides insights into 
applications in the process industries. 

2. Methodology  

The technical concept of the described decision support system is based on the 
methodologies known as non-parametric statistics and lazy learning. The key 
principle is that a predictive model is built on demand from relevant historical 
data, typically a small subset of entire history. The model is fitted to past data 
similar to the situation under study that usually corresponds to the current 
operating point, and is called a query point. The structure of the model is not 
specified a priori, but is instead determined from data. This approach does not 
estimate a global model but defers the processing of data until the prediction is 
explicitly requested. Important enabling infrastructure is the efficient underlying 
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database technology that makes possible to store relevant variables in dedicated 
tables – data marts – and access this data in an iterative fashion. 

2.1. Similarity Search  

Building multiple local models on the fly in the neighborhood of given query 
point requires the ability to find and retrieve nearest neighbors from historical 
database. This need makes the following concept of similarity search of 
fundamental importance for all other DSS components.  
Assume a data set with m numerical variables x = (x1, x2,…, xm). The neighbor-
hood of a query point x0 is defined by Euclidean distance d2 as follows: 
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where the vector h = (h1, h2,…, hm) is composed of bandwidth parameters 
associated with individual variables xi. Bandwidths define intervals around each 
query value x0

i. Data points xk that satisfy the above inequality lie inside the 
neighborhood whose shape is ellipsoidal. 
Practical implementation of the search and retrieval of similar points is done in 
two steps. Capabilities of SQL database engine are used in the first step when a 
standard SELECT command is applied to historical data. Its WHERE clause is a 
conjunction of m inequality constraints formulated as:  

(x0
i - hi) ≤ x0

i ≤ (x0
i + hi) (2) 

This type of condition defines a cube-shaped neighborhood around given query 
point. All data points that satisfy conditions (2) are retrieved to memory and 
processed in the second step that applies Euclidean metric (1) to each of them.  
Sometimes the final number of retrieved points is not sufficient for building of 
reliable local model. In such a case the neighborhood must be adapted – 
enlarged – until it contains a suitable number of points. This adaptation is done 
by multiplying bandwidths hi by a constant greater than one, and consequent 
repetition of both above steps. 
After completion of the search each data point is assigned a weight according to 
its squared distance d2 to the query point. The weights 0 ≤ wk ≤ 1 are calculated 
by applying a specific kernel function – most frequently Gaussian or 
Epanechnikov – to the squared distance. 
The historical data contains mostly numerical variables, but sometimes it is 
necessary to take into consideration also categorical variables like codes of 
individual operating modes, product grades, shifts, or days of the week. These 
categories can be effectively handled only if a specific similarity metric is 
provided typically by a domain expert. Otherwise the categories are considered 
as distinct cases that in fact partition historical data into several disjunct subsets. 
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2.2. Memory-based regression 

Memory-based regression can be applied to a system on which a vector x of m 
independent (input) variables is used to predict the vector y of n dependent 
(output) variables. From the database point of view the time series of historical 
observations are stored in a table that has (n + m) columns. For given query 
point x0 the similarity search algorithm determines N of these historical points 
and retrieves them to the memory. Each of the data points (yk, xk), k = 1,…,N is 
assigned a weight, which expresses the relevance of the data point for prediction 
of output vector y0 at a given query point x0. The dependence of y on x is a 
general stochastic functional relationship yk = f(xk), k = 1,…,N, where f(.) can be 
a parametric model – polynomial regression – whose parameters are to be 
estimated by Bayesian approach as described in [1]. 

2.3. Memory-based classification 

Compared to memory-based regression each output variable y is now assumed 
categorical, taking on a finite set of values identified with sequence {c1 ,…, cp}. 
p is the number of different values of y. The local model is fully defined by the 
probability vector θ = (θ1, …, θp) with positive entries θi > 0, i = 1, …, p, 
summing up to 1, where θi is the probability of y taking a particular value ci. 
The vector θ  is assumed to have a Dirichlet distribution. Bayesian approach for 
computation of probability density function is described in [5] 

2.4. Novelty detection 

Non-parametric approach to novelty detection can be based on the k-nearest 
neighbor algorithm. One of the currently tested approaches assumes that the 
vector h of default bandwidth parameters is determined by an automated 
procedure so as to reflect k-nearest patterns in the historical data. Consequently, 
this vector is iterated until the neighborhood around the query point x0 contains 
exactly k neighbors. The difference between the two bandwidth vectors is used 
as indicator of novelty. 

2.5. Data-driven optimization 

Data-driven optimization can be applied to a system whose output variables y 
do depend on state variables x, and action variables u that can be manipulated 
by the system supervisor. In this case the query point x0 corresponds to the 
current operating point, and the goal is to find such combination of actions u 
that maximizes certain objective function F in the neighborhood of x0. The 
algorithm starts from ranking all historical actions according to objective 
function F. Consequently, the dependence of F on u and x is fitted by a local 
regression model. The best performing actions, called “best practices”, are 



Data-Driven Decision Support and its Applications in the Process Industries 5 

further perturbed utilizing the regression model for estimating F for the newly 
suggested actions. After pre-specified number of iterations the best found 
actions u* are recommended to the supervisor. The algorithm is always 
restricted to the local neighborhood, which assures that the risk of suggesting 
rather bold, or practically infeasible actions is minimized. 

3. Applications 

The presented data-driven DSS has a wide range of applicability. The following 
list of applications gives an idea about possible uses. 
• Demand forecasting is a type of application that can be efficiently solved by 

the memory-based regression algorithm. Demand forecasts are usually 
required for a longer time horizon, which means that the algorithm must be 
applied in batch to a sequence of future points in time. In practical 
implementation a new local model is built for each future point. This concept 
is referred as iterated one-step-ahead prediction [2] All influencing factors, 
which are used as inputs to the model – e.g. meteorological conditions – must 
be determined for the complete forecast horizon in advance. Description of 
such demand forecasting solution for power plants, heating plants, utilities, 
and distribution companies was provided in [1]. 

• Property and performance prediction are another typical applications of 
memory-based regression that can be seen as a flexible tool for inferential 
sensing. Specific examples are catalyst activity estimation, modeling of coke 
formation, or modeling of heat exchanger fouling. Iterating the predictions 
with regular step enables to monitor trends of these performance indicators, 
and alert when the speed of degradation is faster than expected. The value of 
the data-driven approach is in ability to infer the parameters’ values for a 
broad range of conditions, taking into account all past fluctuations. 

• Event classification and fault diagnosis are problems that can be addressed 
by the memory-based classification algorithm. The assumption is that 
historical data contains patterns of specific process states, typically abnormal 
situations, upsets, or faults, and that these patterns are coded in the database 
in terms of annotations – e.g. using a status column filled by categories “off-
spec”, “normal”, “fault A” etc. Then the classifier is able to compute density 
functions for all such event locally in the neighborhood around the current 
operating point. This gives a possibility to foresee problems that will likely 
appear in near future. 

• Risk assessment and validation of operator’s entries is an example of 
possible use of the novelty detection algorithm. In terms of prevention of 
human errors, any set points being entered by the operator can be checked 
against historical data to identify if the process has ever been operated in the 
region defined by the new operating point. Given that all past control settings 
define a possibly multi-modal and complex distribution in multi-dimensional 
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space, the task of novelty detection is to evaluate how “close” or “far” the 
new entries are from frequently applied and safe settings. 

• Cautious optimization is the way how the data-driven optimizer works. The 
assumption is that the historical actions that had been applied to the process 
can be ranked according to one or more key performance indicators (KPI). 
Examples of these KPIs are amount of energy and utilities used, occurrence 
of off-spec production, or the alarm rate observed after applying specific 
actions. Modeling of KPIs around the current operating point enables to drive 
multi-criteria optimization of the process, meaning that the control settings 
are adjusted in small steps leveraging past operating experience. 

4. Conclusions 

The paper presents key concepts and applications of a specific implementation 
of data-driven Decision Support System that takes benefit from combination of 
database technology with non-parametric statistics. Although the system can 
potentially work with complete process history, only a relatively small fraction 
of historical records is needed for fitting local models around the situation under 
study. The principle of building models on the fly allows both adjusting the 
model to the situation already met in the past, as well as continuous adaptation 
to new rends. Non-parametric modeling also allows to handle strongly non-
linear behavior, which brings practical advantages compared to PCA and PLS 
based tools. 
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