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Abstract 

The present work proposes a control parameter adjustment technique using 
Kalman filter applied to an adaptive control strategy. The control algorithm is 
based on neural networks with on-line learning to compute the next action of 
the manipulated process variables. The penalization parameters of the control 
actions are on-line optimised by the Kalman filter. The control strategy was 
tested on an extractive alcoholic fermentation process and the results showed 
the great potential for successful application. 
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1. Introduction 

The control of biotechnological processes is not an easy task mainly due the 
complex nature of the microbial metabolism, as well as to the non-linearity of 
its kinetics, consequently this process required a control method by which the 
process objectives can be achieved reality and quickly.  
Most process control applications consist on not only keeping controlled 
variables at their set points but also keeping the process from violating 
operational constraints. The former is particularly important when there are 
changes in set points and the processes are multivariable and non-linear. While 
good advances have been obtained using conventional adaptive controller 
algorithms, when high performance operation is required, more sophisticated 
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controllers are required. In many industrial systems, they’re strong interactions 
among the process variables as well as internal changes. To cope with the 
former changes algorithm self-tuning capabilities is needed.  
The artificial neural networks (ANN´s) are instuments very interesting because 
the nets approach allows taking into account process nonlinearities as well as 
variable interactions.  Extensively employed in control process [1-5]. 
 In fact, most of the advanced control algorithms have controller parameters set-
up off-line and the computer plays a marginal task in terms of real time 
controller parameters identification. Taking this into account, this work presents 
a control strategy based on neural networks with on-line and real time learning 
of the nets and parameter adjustment using Kalman filter. 
An adaptive algorithm with parameter adjustment using Kalman filter in 
working in a real time basis is developed and implemented. 

2. Control Strategy 

For the development of the present work feedforward architecture with 
backpropagation learning was used. In all the neural networks one hidden layer 
was considered. Historical input-output data obtained by simulation were used 
to off-line training a dynamic neural networks model and an inverse process 
dynamic model. The dynamic network is trained to represent the forward 
process dynamics. There is a time window for the neural network to forget past 
value. The inputs of the network are the current and past values of the 
controlled and manipulated variables and the outputs of the network are the one 
step ahead prediction of the process outputs, in according with equation (1)  
( ) ( ) ( ) ( ) ( )( )111 +−+−=+ mkU,...,kU,nkY,...,kYfkY  (1) 

The inverse process dynamics acts as a controller of the strategy. The inputs are 
the setpoints of the closed loop for the next sampling time; past controlled and 
manipulated variables and the outputs of the neural network are the manipulated 
variables for the next sampling instant.  
The weights of the neural network of the controller are adjusts in such way to 
minimize the estimated global error (Yr- Ŷ). Considering that the estimated 
error is based on a neural model, it is necessary to have a model that represents 
with fidelity the dynamic behaviour of the process. When the quadratic error of 
the neural model outputs is smaller than the desired tolerance, this model is 
used in the optimization routine. If the quadratic error becomes larger in relation 
to a determined error, the controller makes use of the standard weight (weight of 
the off-line learning) to generate the control action for this sampling instant. 
Initially, the neural networks of the controller and the process model were off-
line trained with input-output response data from the process. This initial 
training ensures that the neural controller will be able to provide relatively 
accurate control output signals and process output response. 
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To guarantee the good dynamic representation of the process through neural 
networks, a strategy formed by three neural networks representing the dynamic 
behaviors acting parallelly was adopted. The first is formed by weights of the 
off-line learning, here denominated of standard weights; the second, is 
initialized with the standard weights and it is submitted at the on-line learning. 
Whenever the standard weights present better performance, this net has its 
weights substituted by the standard weights. The third is initialized with the 
standard weights and continually is submitted to the on-line learning at each 
sampling time. The neural network that presents the smallest quadratic error in 
the representation of the vector that contains the last inputs/outputs of the 
process is used in the control strategy in this sampling time [6]. 

2.1. Methodology  

A first order filter was used in the reference of the process (setpoint) and a 
penalization in the control action was used. The objective of this work is to 
adjust the penalization parameters in the filter of the control actions and a robust 
behavior of the process output is expected. The penalization of the control 
actions is given by the equation (2): 

)t,i(u)1()1t,i(u)t,i(u ANNii λλ −+−=  (2) 
where: 
u(i,t): control action i, applied to the process in the time t; 
uANN(i,t): control action i, obtained by the neural controller in the time t; 
λi: penalization parameter for the manipulated variable i estimated by Kalman 
Filter (0≤λi<1). 
The adjustment or tuning algorithm of the parameter λ is based on the standard 
Kalman filter. To be able to adjust λ a dynamical system has to be created 
which can observe the state of the parameter λ as in: 
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where wi,k and vi,k are random variables with a normal distribution of N(0,Q) and 
N(0,R) respectively. Zi,k is the measurement related to the state λi,k. Normally 
the noise of a parameter state is zero, but a small process noise results in a more 
stable filter. 
The observation equation of the λ is based on the past and not on the present 
data. Thus the algorithm changes λ in a feedback way. It would be desirable that 
the penalization parameters are raised, when the process is changing rapidly. 
This assures that the process will not show oscillatory behaviour. It is used an 
intuitive approach, which is based on the definition of the relative gain, which 
results in the following identification system. 
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where Jij’s are the coefficients of the jacobian matrix of the input/ouput 
variables and φ is a velocity factor. The jacobian matrix was calculated at each 
sample time and φ is a project parameter. 
The absolute value is taken as the penalization parameter has a positive value. 
In case of the derivatives of the responses are large it is necessary to put a 
velocity factor, φ. Small value of the parameter results in a reduction of the 
penalization parameter λ. The velocity factor is a parameter which still has be 
tuned manually. But the number of parameters to be tuned will be reduced. 

2.2. Case study 

As a study case its was used a 3x3 multivariable process, represented by an 
alcoholic fermentation plant, proposed by Silva et al. [7], where the 
manipulated variables were the feed stream flow rate (Feed), cells recycle rate 
(R), flash recycle rate (r). The control variables were: product concentration (P), 
substrate concentration (S) and cell concentration (X). 

2.3. Results & discussions 

The velocity factor is a parameter which still has be tuned manually, while it is 
wanted to eliminate the tuning of the suppression factor. For this case the better 
velocity factor was 0.2. While the number of parameters to be tuned for MIMO 
system is reduced in this way, it is still not the ideal case where no parameter 
has to be tuned. Therefore it has to be continued the search for other ways to 
identify the suppression factors, which results in no introduction of another 
parameter.  
The servo problem as well as the regulator problem was undertaken. The 
regulator problem was caused by the change in the feeds concentrations of 
substrate (So) and temperature (To) (Figure 1 and 2). In the servo case four 
perturbations are done according Figure3. 
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Figure 1. Regulator Problem (So).                                  Figure 2. Regulator Problem (To).  

It is presented in Figure 3 the control of the product concentration and Figure 4 
presented the control of substrate and microorganism concentration. 

 
 Figure 3. Servo Problem Control P.                             Figure 4. Servo Problem Control S and X.     
 
Figures 5 and 6 presented the results for servo plus regulator problem.  
 

 
Figure 5. Servo Plus Regulator Problem (P).   Figure 6. Servo Plus Regulator Problem (S) and (P) 
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The evolution of the estimated penalization parameters obtained by the Kalman 
for servo problem and servo plus regulator problem are show in the Figures 7 
and 8. It can be observed the penalization parameter (λ) changes mainly when 
the process changes, because the applied identification scheme which is a 
function of process. 

          
 

Figure 7. Evolution of λ for Servo Problem.            Figure 8. λ for Servo Plus Regulator Problem.            

3. Conclusions 

The proposed control algorithm has shown to be robust for the analysed 
disturbances, promising to have a great potential to be used in control strategies 
of large scale systems. It is noted the importance of the adjustment of the 
penalization parameter factor to be able to cope with change in process 
operations. The estimation algorithm of the penalization parameter, will 
determine successfully the rate of change of the system due to the control 
action. In case of MIMO processes the number of parameters to be tuned 
manually is lowered for the algorithm. Still, it has to be searched for better ways 
of identifying the suppression factor, which do not lead to introduction of new 
parameters. 
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