
17th European Symposium on Computer Aided Process Engineering – ESCAPE17
V. Plesu and P.S. Agachi (Editors)
© 2007 Elsevier B.V. All rights reserved. 1

An Overview of the Interoperability Roadmap for
COM/.NET-Based CAPE-OPEN

William M. Barretta, Michel Ponsb, Lars von Wedelc, and Bertrand
Braunschweigd

a US Environmental Protection Agency, 26 W Martin Luther King Drive, Cincinnati,
OH 45268, USA, barrett.williamm@epa.gov
b CO-Lan, c/o Institut Français du Pétrole, 1&4 Avenue de Bois Preau, 92852 Rueil-
Malmaison Cedex, France, cto.co-lan@tiscali.fr
c AixCAPE e.V. , Turmstrasse 46, 52064 AACHEN, GERMANY, vonwedel@aixcape.org
d Institut Français du Pétrole, 1 & 4 avenue de Bois Préau, F-92500 Rueil Malmaison,
France, Bertrand.BRAUNSCHWEIG@ifp.fr

Abstract

 The CAPE-OPEN standard interfaces have been designed to permit
flexibility and modularization of process simulation environments (PMEs) in
order to use process modeling components such as unit operation or
thermodynamic property models across a range of tools employed in the
lifecycle of chemical process systems engineering. Technical foundations of
interoperable software are constantly changing and Microsoft is nowadays
declaring .NET and a successor to COM which has been the major platform for
numerous CAPE-OPEN components so far. In order to ensure that the CAPE-
OPEN idea will be applicable to recent technical changes, the COLaN has
gathered experiences in the area of CAPE-OPEN implementations making use
of .NET. This paper will demonstrate that CAPE-OPEN can be successfully
implemented using .NET development tools and highlight how the CAPE-
OPEN development can benefit from these new technologies.

Keywords

CAPE-OPEN, Component Object Model (COM), Microsoft .NET,
Interoperability

2 W.M. Barrett et al

1. Introduction

 At present, there stands significant experience demonstrating the success of
the CAPE-OPEN standards utilizing Microsoft’s Component Object Model
(COM)-based process modeling components (PMCs) within COM-based
process modeling environments (PMEs). Indeed, today a number of major
Microsoft Windows-based process simulation applications utilize CAPE-OPEN
interfaces to enable plug-and-play use of third party PMCs. As a result of
Microsoft’s update of COM to the .NET Framework and the likelihood that
COM will no longer be supported, the CAPE-OPEN Laboratories Network
(CO-LaN) has evaluated the use of .NET within the CAPE-OPEN
standardization process with the objective to explain new paths for integrating
process modeling software to the CAPE community.
 During the summer of 2006, the CAPE-OPEN Laboratories Network (CO-
Lan) created a document entitled “.NET Interoperability Guidelines”1, which is
available through the CO-LaN website, www.colan.org. Preparation of this
document benefited greatly from the experience of the authors in development
work involved in creation of a process modeling environment (PME) based on
.NET at the USEPA2 and in migration of unit operation and thermodynamic
models from academic research into CAPE-OPEN compliant process modeling
components (PMC) at AixCAPE. The major result is that interoperability based
upon .NET is a workable solution for the period of time in which COM and
.NET implementations will exist besides each other.
 This paper presents an overview of the CAPE-OPEN-specific interoperability
guidelines prepared and published by CO-LaN that provide developers with
insight into how to implement various CAPE-OPEN functionality in .NET. It
briefly introduces .NET as a jump start into this new technology, explains
general interoperability between COM and .NET as well as particular issues
discovered during the above mentioned development in interoperating CAPE-
OPEN software modules across COM and .NET.
 In order to assess the need for developing native .NET interface
specifications for the CAPE-OPEN standards, the CO-LaN has launched a
survey among the CAPE community. The results of this survey will influence
the future technical basis of the CAPE-OPEN standard and are discussed further
below. The contribution concludes with a discussion of future aspects of CAPE-
OPEN standardization development and the relevance of .NET.

2. .NET Background

 The Microsoft .NET framework was created during the late 1990s by
Microsoft with several goals in mind, which includes the unification of the
various development technologies being used to date (such as COM, Active
Server pages (ASP), etc.); bringing an opponent to Sun’s Java technology on
the market; better coverage of mobile devices; simplifying application

An Overview of the Interoperability Roadmap for COM/.NET-Based CAPE-OPEN 3

deployment of (fighting so-called DLL hell); and better response to security
issues.
 The major difference between .NET and previous object models was the use
of managed code which is not executed by a physical processor in hardware, but
by a virtual processor emulated by a virtual machine. The code to be executed
by virtual machines resides in assemblies which resemble dynamic linked
libraries (DLLs) but are equipped with metadata describing their identity,
locale, version number, content, and many other things. The virtual machine of
the Common Language Runtime (CLR) provides a type system which permits
data and classes to be shared across software written in a variety of several
programming languages. Additionally, using platform invocation services
(P/Invoke), .NET can also interoperate with legacy DLLs.
 The architecture of the .NET framework is based upon the open specification
of the Common Language Infrastructure (CLI) that was ratified by the European
Computer Manufacturer’s Association (ECMA)3 and has been submitted to the
International Organization for Standardization (ISO). This standard has not only
been used as a basis for implementing the Microsoft .NET framework, but also
in other projects such as the Mono Project (http://www.mono-
project.com/Main_Page) development platform (for various Unix operating
systems variants) or Portable .NET (http://www.dotgnu.org/pnet.html).
 The advantages of the .NET architecture is that security is improved because
assemblies are signed and their identity is verifiable. Further, because assembly
versions are unique, multiple assemblies can exist side-by-side, allowing the
application to use the appropriate component version.

3. Interoperability Issues

 As the majority of commercial implementations of CAPE-OPEN rely on
Microsoft’s COM as a supporting middleware platform, the ability to
successfully utilize the existing COM interfaces to interact with existing PMEs
must be demonstrated as well as the interoperability between .NET-based PMEs
with existing libraries of PMCs. Testing revealed the primary issues data type
conversions, error handling, collections, persistence, and object registration.
 In general, the creation of a primary interop assembly from the COM-based
CAPE-OPEN type library was sufficient to convert the existing CAPE-OPEN
interfaces to .NET based interfaces. Of the COM data types used by CAPE-
OPEN, Boolean and Variants were most problematic. The Boolean data type in
COM uses 1 for true and 0 for false, whereas the .NET Boolean complies with
C++ style, where true is non-zero and false is zero-valued. COM variants are
converted to the Object data type in .NET. Problems were encountered with the
variant-wrapped arrays used by CAPE-OPEN and in assuring the class objects
were returned as IDispatch-based class objects. These issues are easily resolved
through the use of .NET’s Marshall class attributes.

4 W.M. Barrett et al

 CAPE-OPEN error handling uses COM-style HRESULT function returns,
with additional error information obtained through error interfaces supported by
the PMC returning the error HRESULT. This differs from the COM
GetErrorInfo API supported by .NET’s COM interop. In order to comply with
CAPE-OPEN’s error handling, when .NET exceptions are thrown by a PMC,
the exception needs to indicate the appropriate error HRESULT and the PMC
needs to implement the CAPE-OPEN error interface. Further, a .NET-based
PME would need to obtain the CAPE-OPEN error interfaces from the PMC and
use that information to create and re-throw an exception that can be caught and
processed in the PME’s .NET-based exception handling infrastructure.
 Generic .NET collections in general support COM-based collection methods,
and must support the CAPE-OPEN collection interfaces. The main issue is that
the CAPE-OPEN collection index is 1-based (first item is index 1) where .NET
collections are 0-based (first item index 0). Further, the CAPE-OPEN
collection’s Item method uses a COM variant argument that Visual Basic treats
as either a 16-bit or 32-bit integer, so the .NET collection’s implementation of
the CAPE-OPEN Item method must test integer indices for both these types.
 Persistence mechanisms were drastically changed between COM and .NET.
.NET-based PMCs must support one of the COM-based persistence
mechanisms indicated in the CAPE-OPEN persistence specifications. Further, a
.NET-based PME should wrap a COM-based PMC in a serializable class and
persist the PMC to a serializable stream.
 Object registration is complicated by the need to place the object in the
appropriate CAPE-OPEN component categories. This can be accomplished by
instructing Visual Studio to register the class library for COM interoperation. In
order to expose the object as a CAPE-OPEN-based PMC, the component must
also be registered in the appropriate CAPE-OPEN categories, which is
accomplished using a COM registration function that creates the appropriate
CAPE-OPEN categories and adds the object to the categories.

4. Summary of Survey Results

 Following preparation and publication of the draft interoperability guidelines,
the CO-Lan conducted a survey of software vendors, end users and academics
to determine their intentions regarding the use of .NET. The survey, sent to
more than 300 organizations, probed for the interfacing technology used with
other CAPE software, for the programming languages and development tools
used, for the use of .NET framework or plan to use it. Current status and plans
towards implementation of CAPE-OPEN interfaces constituted a second part of
the survey. Most of the answers were from CO-LaN members.
 The answers are related to 24 different software products, either PMEs or
PMCs. The .NET framework is already used by only a few CAPE software
developers having answered the survey. C++ is the preferred programming
language with Visual Basic and FORTRAN also in use. Microsoft Visual

An Overview of the Interoperability Roadmap for COM/.NET-Based CAPE-OPEN 5

Studio is the only development tool for all software targeted at Windows
platforms. Only two organizations listed Unix/Linux/Solaris as either their sole
or alternate platform supported by their product. While most of the software
products listed implement CAPE-OPEN interfaces, mostly COM based ones,
proprietary interfaces to other CAPE software are also often implemented.
 One software vendor, one already using the .NET framework indeed,
described the development of .NET native interfaces by CO-LaN as critical
while it was marked as important half a dozen times. Otherwise organizations
listed this as not important and once as not necessary.
 While the survey results indicate that there is currently no strong push from
the CAPE community for the CO-LaN to create .NET native interfaces, CO-
LaN needs to proactively identify and prepare for changes in the development
environment relevant to CAPE. As the COM object model is being deprecated,
CO-LaN’s proactive evaluation of the .NET environment will allow a decision
to be made regarding a roadmap for transitioning from COM to .NET based not
only on the survey answers, but an analysis of how the discontinuation of COM
and a transition to .NET will effect CAPE user and allow them to take
advantage of adavances in information technology in the years to come.

5. CAPE-OPEN Road Map

 The CAPE-OPEN “.NET Interoperability Guidelines” document provides a
more detailed discussion of the added features associated with .NET, and shows
that .NET objects can be readily used in a COM environment. Further, a .NET
environment can also readily use objects created in COM. This demonstrated
that interoperability is the first step in moving from one object model to another
– ensuring legacy objects are supported. Clearly, interoperability, legacy
support, and added features are important in evaluating the use of the .NET
object model, but other issues remain, such as whether there will be a
requirement for future changes in object model and will the new object model
be robust enough to evolve as new technologies are developed and brought to
bear on future problems.
 As a starting point for this discussion, it should be recalled that “The first
objective of the [CAPE-OPEN] partnership was to understand how software for
designing and optimising process plants could be modified to make use more
cost-effective by integrating software pieces one into another.”4 At present,
there stands significant experience demonstrating the success of this endeavor
as COM-based PMCs can now readily be utilized in a wide range of PMEs
through the use of the CAPE-OPEN interface set. While this effort is not
complete, some interface packages require little more than fine tuning of tested
interface models while other interface packages are still in their infancy, future
efforts should build upon past accomplishment. A clear consideration is that any
changes to the object model build upon this experience, and .NET meets this
criterion.

6 W.M. Barrett et al

 One key issue related to the continued use of COM is that COM is a
proprietary technology created by Microsoft, and Microsoft is in the process of
phasing it out. Microsoft’s COM web page (http://www.microsoft.com
/com/default.mspx) clearly states: “Microsoft recommends that developers use
the .NET Framework rather than COM for new development.” At this point, it
should be noted that the need to consider a new object model is due to the
reliance on a previous proprietary model and that the .NET Framework and the
Common Language Runtime (CLR) are Microsoft proprietary models. The risk
that the .NET object model will be deprecated or made obsolete is reduced by
the fact that the Common Language Infrastructure (CLI), the C# programming
language, and the C++/CLI programming language are open standards that have
been accepted by the European Computer Manufacturer’s Association (ECMA).
Third-party implementations of both the CLI and C# language exist, such as the
Mono Project (http://www.mono-project.com/Main_Page) and dotGNU
(http://dotgnu.info/). These implementations can run not just in the Windows
environment, but also on Linux/UNIX and Apple’s Macintosh Operating
System. The fact that open-source, shared source, and third-party
implementations of the CLI (and therefore, the .NET Framework) exist reduces
the risk that a new object model will be designed that will supplant this effort.
 Another area that must be considered is the ability of the object model to
evolve as new technologies are brought to bear on CAPE-related problems.
Recently, CAPE-OPEN-based process simulation tools have been demonstrated
on a parallel processing system. Technologies that one can readily expect
process simulation applications to use, include advances in processor
architecture and distributed applications. Microprocessor manufacturers and
software developers are slowly moving away from 32-bit processors to 64-bit
processors, which provide more addressable memory and faster computation.
 At present, the .NET Framework, and ultimately the standardized CLI,
appear to meet the needs of providing a relatively stable development platform
for the foreseeable future. This architecture improves on issues related to COM
development such as registration and security. Given the current state of the
.NET Framework, and the third-party/cross platform implementations of the
CLI, the .NET Framework is poised to be used as a replacement for COM.

Bibliography

1. CO-Lan (2006) .NET Interoperability Guidelines., CO-Lan. Accessible at www.co-lan.org.
2. Barrett, W. M.; Yang, J., Development of a chemical process modeling environment based

on CAPE-OPEN interface standards and the Microsoft .NET framework. Computers &
Chemical Engineering 2005, 30, (2), 191-201.

3. ECMA (2005). Standard Number 335, Common Language Infrastructure. Geneva, ECMA
International.

4. Pons, M. (2003). "Industrial Implementations of the CAPE-OPEN Standard." AIDIC
Conference Series 6: 253-262.

