
17th European Symposium on Computer Aided Process Engineesing – ESCAPE17
V. Plesu and P.S. Agachi (Editors)
© 2007 Elsevier B.V. All rights reserved. 1

The solution of DAE systems by a numerically
robust and efficient solver

Davide Manca, Guido Buzzi-Ferraris

CMIC Department, Politecnico di Milano, P.zza Leonardo da Vinci, 32,
20133 MILANO – ITALY, davide.manca@polimi.it

Abstract

The paper describes a modern approach to the solution of Differential and
Algebraic Equation (DAE) Systems through a C++ routine: BzzDae belonging
to the BzzMath freeware numerical library. After an introduction to BzzMath
and the object oriented approach to numerical problems the manuscript focuses
the attention on the robustness and efficiency features that characterize BzzDae
with respect to the Fortran counterparts. A number of clarifications are given to
describe the capabilities of BzzDae over the other solvers.

Keywords

Numerical calculus, DAE solver, robustness, efficiency, algorithm, routine

1. Introduction

The solution of applied numerical problems dealing with the integration of
Differential and Algebraic Equation (DAE) Systems calls for the adoption of a
suitable solver. The complexity of the problem resides mainly in the intrinsic
stiffness of the DAE system as reported by Shampine [1]. This means that
specific attention has to be paid to both numerical methods and solver routines.
In fact, the DAE problem is quite challenging, not only for the precision
required, but also in terms of robustness and efficiency. For example, when
combustion processes are involved, the robustness feature can be referred to
sudden ignitions, steep profiles, high gradients, cool flames, and highly

2 D. Manca et al.

discontinuous temperature, pressure, and concentration profiles. On the other
hand, the efficiency feature is mainly concerned with numerical simulations that
can take a large amount of CPU time. The relevant number of equations, the
structure of the Jacobian matrix (banded, block, sparse) as well as its evaluation
and update are of paramount importance when trying to address the efficiency
feature. This manuscript presents the BzzDae solver, which is an object oriented
class written in C++, belonging to the BzzMath library [2, 3].
BzzMath is available on the Internet at www.chem.polimi.it/homes/gbuzzi/ and
is downloadable as freeware software for non commercial use.

2. Numerical methods and routines for DAE systems

Before addressing the DAE subject, it is worth spending some words on the
numerical algorithms for the solution of ordinary differential equation (ODE)
systems. As the ancestors of DAE packages, ODE solvers share several
peculiarities and a common theoretical background with them. Starting from
DIFSUB [4] and passing to GEAR [5], LSODE [6], VODE [7, 8], and BzzOde
[9] the improvement in terms of the features and capabilities of ODE solvers
has been continuous, mainly in terms of robustness and efficiency. As far as the
DAE systems are concerned, besides the well known LSODI routine [6], the
most recent decades were characterized by the evolution of the DASSL routine
[10] into DASPK [11] and by the introduction of BzzDae [12]. Other
integration routines such as: LIMEX [13], DAESOL [14] and SPRINT [15] are
also mentioned in the literature but are not so widely diffused as the previous
ones. The aim of this paper is to present and discuss a few modifications and
numerical expedients introduced into BzzDae with respect to the well known
Fortran routines to increase the computational efficiency of the methods while
overcoming their numerical instability.
Usually speaking, when chemical engineering problems are involved, the
dynamic simulation of a process/system/equipment calls for the solution of a
differential-algebraic equation (DAE) system. The differential equations, which
describe the time or space evolution of the investigated system are often first
order with initial value conditions. The algebraic portion usually comes from
equations of state, chemical and physical equilibria, stoichiometric consistency
and boundary conditions. As before said, a quite important feature of DAE
systems is their intrinsic stiffness [1]. As a consequence, a dedicated numerical
routine must be adopted when solving these stiff problems. Often the simulation
of such processes is quite challenging in terms of: precision (unbalance in the
dynamics of reactants/products and radicals) efficiency (a simulation can take
several hours and even days of CPU time) and robustness (short-lived species,
sudden ignition, steep profiles, and high gradients).

BzzDae integrates DAE systems of index 1 and 2 in the form: 1

2

(,)
(,) 0

t
t

′ =⎧
⎨ =⎩

y f y
f y

.

The solution of DAE systems by a numerically robust and efficient solver 3

A rather concise description of the main features of BzzDae is here reported.

On the robustness side BzzDae is characterized by the following features:
1. If the real modeled problem is based on variables that are physically

bounded, the only Fortran routine able to deal with constraints is DASPK.
DASPK apparently allows assigning a non-negative constraint to the solution
vector y throughout the integration path. By setting an internal index, when
calling DASPK, the user can specify that y should not be negative. This
option is the first step towards the extended feature of BzzDae that allows
specifying both minimum and maximum constraints. With reference to
DASPK, if the model subroutine (FEX) comprises functions, which cannot
accept negative arguments, then the integration program will abort during the
execution, with a floating point exception, as soon as y becomes negative.
This could seem to be nonsensical since DASPK has been informed that
negative y elements should be avoided. The problem is that DASPK checks
for non-negative values, setting the negative variables equal to zero, only
after the corrector procedure has reached the convergence within the required
precision limit. This means that if, during the predictor step or the corrector
iterations, any value of y becomes negative, the solver will not take any
action to overcome the negative value problem. This is the reason for the
possible math error here described. The DASPK solver also relies on another
method to address this issue: the user can assess the consistency of input
vector y through a status index and immediately return the control to the
solver. In this case, DASPK reduces the step size and checks again the
convergence within the corrector, but if the integration routine, at the last
successful thn step , has found 0n

iy = and () 0n
iy′ < then any predictor action

on the following ()1 thn + step will be negative: 1
, 0n

i predictory + < inducing
DASPK to reduce the step size indefinitely, until it finally aborts the
integration procedure due to a step size 0h → . The correct approach to the
constrained problem should come from the DAE solver in terms of decisions
to be made at each step of the integration procedure. This is the only way by
which the DAE system routine is safe and math errors are avoided a priori.
Actually, the BzzDae user (if required by the problem’s nature) simply
assigns the maximum and/or minimum constraint vectors. The solver
automatically handles the constraints, taking care not to violate the assigned
bounds. The control is performed before passing any illegal values to the
DAE system routine. The correction vector, b , is accepted only when the
nonlinear system, resulting from the DAE problem, is accurately solved
within the assigned precision and, at the same time y complies with the
constraints. By doing so, the DAE function is always computed with safe y
values.

2. BzzDae adopts a stabilization technique when repeated convergence failures
occur. The integration order is automatically reduced to one and the DAE
solver restarts from the last successful convergence point. By doing so, the

4 D. Manca et al.

numerical problem becomes completely consistent as shown in detail in [9]
and [12].

3. Both the order and step size are reduced when there are convergence
problems.

4. As suggested by Brenan et al. [16] the order is reduced when the elements of
the Nordsieck vector are not decreasing.

On the efficiency side BzzDae is characterized by the following features:
1. As it happens within DASPK, and contrary to LSODI, there is a distinct

memory allocation for both the Jacobian matrix, J , and its factorization
)(0JIG hr−= . A direct consequence of such a feature is an overall efficiency

improvement since when a different step size or method order is chosen,
there is no need to reevaluate the Jacobian matrix, J , and then superimpose
its factorization, G , which is needed by the non-linear system solver based
on the Newton method. Most of the DAE chemical problems have the
following characteristics: (1) each function evaluation (DAE system) is
highly time consuming, (2) the Jacobian matrix, J , is evaluated numerically
by finite differences, (3) the number of equations is quite relevant. From this
point of view, it is evident that the function evaluations have the greatest
impact on the CPU time [17]. The Jacobian evaluation becomes more and
more exacting when the equations number increases.

2. BzzDae follows a different criterion with respect to DASPK in determining
when to update the Jacobian matrix. The first significant difference is that
BzzDae checks whether J is out of date through the following equation:

1 1 1() f ()n n n n t n nt t+ + +′ ′≅ + ⋅ − + ⋅ −y y J y y , where nnnn yyyy ,,, 11 ++ ′′ are the variables

at the thn and ()1 thn + iterations and tf is the time derivative of the DAE
system. When the equations number, eqn , is high, the Jacobian numerical
evaluation is rather time consuming so it is advisable to delay the update of
J as far as possible. Conversely, if the system has few equations, it is
convenient to evaluate J more frequently in order to increase the Newton
method efficiency with a reduced effort. Due to these considerations, BzzDae
evaluates a new Jacobian matrix at most after m steps, with m being a
function of eqn . Since the Jacobian consistency is controlled in a deeper and
more accurate way, respect to the conventional DAE routines, it is also safer
to increase the maximum allowed number of steps performed, by keeping the
Jacobian matrix constant.

3. DAE systems characterized by sparse and not necessarily structured Jacobian
matrices can be easily solved by exploiting the automatic memory allocation
and matrix rearrangement of the C++ classes.

The aforementioned features improve the overall performance of BzzDae when
dealing with problems characterized by:

The solution of DAE systems by a numerically robust and efficient solver 5

• DAE systems with Jacobian matrices having complex λ eigenvalues with
negative real parts 0)Re(<λ and large imaginary parts 1)Im(>>λ .
Physically speaking this means: highly oscillating problems;

• DAE systems with large discontinuities in the derivatives (i.e. discontinuous
or piecewise physical properties, IF … THEN structures, code branching);

• DAE systems that require constrained integration variables, i.e. the
dependent variables, y , must belong to a feasible interval defined by lower
and/or upper bound vectors.

In contrast with the DASSL/DASPK approach, BzzDae normalizes the
algebraic portion of the Jacobian matrix by the step size: h . With reference to
the Jacobian matrix, G , of the non-linear system, the BzzDae formulation

exploits the following structure:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

−
=

2

2

1

2

2

1
0

1

1
0

ff

ff

yy

yy
I

G
hrhr

as opposite to the DASSL/DASPK structure:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

−
=

2

2

1

2

2

1
0

1

1
0

ff

ff

yy

yy
I

G
hh

hrhr

where: 1y are the differential variables, 2y are the algebraic variables, h is the
stepsize and 0r is the first coefficient of the Backward Differential Formula
method. Brenan et al. [16] suggest to divide the algebraic equations for a
constant proportional to h . The DASPK guidebook [11] suggests to multiply
the algebraic equations by a constant which is proportional to the inverse of the
stepsize h . Since the second row elements of the original G matrix are
multiplied by h , it is correct and advisable to automatically simplify such
elements through an a priori division by h . This simple trick significantly
increases the robustness and precision of the solver.

3. Conclusions

When addressing DAE problems, it is very advantageous to make use of
dedicated DAE solvers while avoiding any decoupled implementation of the
differential and the algebraic portions. The performance losses are evident when
solving the algebraic portion inside the ordinary differential system.
A further relevant aspect refers to the boundaries on the integration variables.
As a matter of fact, the direct manipulation made by the solver itself of the
lower and upper limits within the predictor/corrector steps is a critical feature in
terms of both robustness and efficiency. Robustness and efficiency are not two
antithetic terms. Conversely, when the numerical solver encompasses a crisis,
during the DAE integration, the increment in robustness is tightly coupled to a

6 D. Manca et al.

performance enhancement. In this sense a robust numerical routine should be
able to debottleneck several stagnant situations.

References

1. Shampine L. F., “What is Stiffness? Stiff Computation”, R. C. Aiken ed., Oxford
University Press, New York, 1-16, (1985).

2. Buzzi-Ferraris G., Scientific C++: Building Numerical Libraries the Object-Oriented Way,
Addison Wesley Longman, New York, (1993).

3. Manca D., G. Buzzi-Ferraris, BzzMath: an Object Oriented Numerical Project, Proceedings
of ICheaP 7, Taormina Italy, 15-18 May, (2005).

4. Gear C.W., Algorithm 407, DIFSUB for Solution of Ordinary Differential Equations,
Comm. ACM, 14(3) (1971) 185-190.

5. Hindmarsh A.C., GEAR: Ordinary Differential Equation System Solver, Report UCID
30001, Rev. 3, Lawrence Livermore Laboratory, Livermore, CA, (1974).

6. Hindmarsh A.C., LSODE and LSODI, Two New Initial Value Ordinary Differential
Equation Solvers, ACM SIGNUM Newsletters, 15 (1980) 10-11.

7. Brown P.N., G.D. Byrne, and A.C. Hindmarsh, VODE: A Variable Coefficient ODE
Solver, Siam J. Sci. Stat. Comput., 10 (1989) 1038-1051.

8. Byrne G.D., A.M. Dean, The Numerical Solution of Some Kinetics Models with VODE
and CHEMKIN II, Comp. Chem., 17 (1993) 297-302.

9. Buzzi Ferraris G., D. Manca, “BzzOde : A New C++ Class for the Solution of Stiff and
Non Stiff Ordinary Differential Equation Systems”, Computers Chem. Engng., Vol. 22, 11,
1595-1621, (1998).

10. Petzold L.R., A Description of DASSL: a Differential/Algebraic System Solver, Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, (1983).

11. Brown P. N., A. C. Hindmarsh and L. R. Petzold, “A Description of DASPK: A Solver for
Large-Scale Differential-Algebraic Systems”, Lawrence Livermore National Report
UCRL, (1992).

12. D. Manca, G. Buzzi-Ferraris, T. Faravelli and E. Ranzi, “Numerical Problems in the
Solution of Oxidation and Combustion Models”, Combustion Theory and Modelling, 5,
185-199, (2001).

13. Deuflhard P., U. Nowak:, “Extrapolation Integrators For Quasilinear Implicit Ode's”,
University of Heidelberg, SFB 123, Tech. Rep. 332, (1985).

14. Bauer I., F. Finocchi, W.J. Duschl, H.-P. Gail and J.P. Schlöder, “Simulation of chemical
reactions and dust destruction in protoplanetary accretion disks”, Astron. Astrophys., 317,
273-289, (1997).

15. Berzins M., R. M. Furzeland, “A User's Manual for SPRINT - A Versatile Software
Package for Solving Systems of Algebraic Ordinary and Partial Differential Equations: Part
1 - Algebraic and Ordinary Differential Equations”, Report TNER.85.058, Shell Research
Ltd, Thornton Research Centre, Chester, (1985).

16. Brenan K. E., S. L. Campbell and L. R. Petzold, “Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations”, North-Holland, New York, (1989).

17. Manca D., T. Faravelli, G. Pennati, G. Buzzi Ferraris and E. Ranzi, “Numerical Integration
of Large Kinetic Systems”, ICheaP-2 Conf. Ser., ERIS, 115-121, (1995).

