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Abstract 

The paper describes a modern approach to the solution of Differential and 
Algebraic Equation (DAE) Systems through a C++ routine: BzzDae belonging 
to the BzzMath freeware numerical library. After an introduction to BzzMath 
and the object oriented approach to numerical problems the manuscript focuses 
the attention on the robustness and efficiency features that characterize BzzDae 
with respect to the Fortran counterparts. A number of clarifications are given to 
describe the capabilities of BzzDae over the other solvers. 
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1. Introduction 

The solution of applied numerical problems dealing with the integration of 
Differential and Algebraic Equation (DAE) Systems calls for the adoption of a 
suitable solver. The complexity of the problem resides mainly in the intrinsic 
stiffness of the DAE system as reported by Shampine [1]. This means that 
specific attention has to be paid to both numerical methods and solver routines. 
In fact, the DAE problem is quite challenging, not only for the precision 
required, but also in terms of robustness and efficiency. For example, when 
combustion processes are involved, the robustness feature can be referred to 
sudden ignitions, steep profiles, high gradients, cool flames, and highly 
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discontinuous temperature, pressure, and concentration profiles. On the other 
hand, the efficiency feature is mainly concerned with numerical simulations that 
can take a large amount of CPU time. The relevant number of equations, the 
structure of the Jacobian matrix (banded, block, sparse) as well as its evaluation 
and update are of paramount importance when trying to address the efficiency 
feature. This manuscript presents the BzzDae solver, which is an object oriented 
class written in C++, belonging to the BzzMath library [2, 3]. 
BzzMath is available on the Internet at www.chem.polimi.it/homes/gbuzzi/ and 
is downloadable as freeware software for non commercial use. 

2. Numerical methods and routines for DAE systems 

Before addressing the DAE subject, it is worth spending some words on the 
numerical algorithms for the solution of ordinary differential equation (ODE) 
systems. As the ancestors of DAE packages, ODE solvers share several 
peculiarities and a common theoretical background with them. Starting from 
DIFSUB [4] and passing to GEAR [5], LSODE [6], VODE [7, 8], and BzzOde 
[9] the improvement in terms of the features and capabilities of ODE solvers 
has been continuous, mainly in terms of robustness and efficiency. As far as the 
DAE systems are concerned, besides the well known LSODI routine [6], the 
most recent decades were characterized by the evolution of the DASSL routine 
[10] into DASPK [11] and by the introduction of BzzDae [12]. Other 
integration routines such as: LIMEX [13], DAESOL [14] and SPRINT [15] are 
also mentioned in the literature but are not so widely diffused as the previous 
ones. The aim of this paper is to present and discuss a few modifications and 
numerical expedients introduced into BzzDae with respect to the well known 
Fortran routines to increase the computational efficiency of the methods while 
overcoming their numerical instability. 
Usually speaking, when chemical engineering problems are involved, the 
dynamic simulation of a process/system/equipment calls for the solution of a 
differential-algebraic equation (DAE) system. The differential equations, which 
describe the time or space evolution of the investigated system are often first 
order with initial value conditions. The algebraic portion usually comes from 
equations of state, chemical and physical equilibria, stoichiometric consistency 
and boundary conditions. As before said, a quite important feature of DAE 
systems is their intrinsic stiffness [1]. As a consequence, a dedicated numerical 
routine must be adopted when solving these stiff problems. Often the simulation 
of such processes is quite challenging in terms of: precision (unbalance in the 
dynamics of reactants/products and radicals) efficiency (a simulation can take 
several hours and even days of CPU time) and robustness (short-lived species, 
sudden ignition, steep profiles, and high gradients).  

BzzDae integrates DAE systems of index 1 and 2 in the form: 1
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A rather concise description of the main features of BzzDae is here reported. 

On the robustness side BzzDae is characterized by the following features: 
1. If the real modeled problem is based on variables that are physically 

bounded, the only Fortran routine able to deal with constraints is DASPK. 
DASPK apparently allows assigning a non-negative constraint to the solution 
vector y  throughout the integration path. By setting an internal index, when 
calling DASPK, the user can specify that y  should not be negative. This 
option is the first step towards the extended feature of BzzDae that allows 
specifying both minimum and maximum constraints. With reference to 
DASPK, if the model subroutine (FEX) comprises functions, which cannot 
accept negative arguments, then the integration program will abort during the 
execution, with a floating point exception, as soon as y  becomes negative. 
This could seem to be nonsensical since DASPK has been informed that 
negative y  elements should be avoided. The problem is that DASPK checks 
for non-negative values, setting the negative variables equal to zero, only 
after the corrector procedure has reached the convergence within the required 
precision limit. This means that if, during the predictor step or the corrector 
iterations, any value of y  becomes negative, the solver will not take any 
action to overcome the negative value problem. This is the reason for the 
possible math error here described. The DASPK solver also relies on another 
method to address this issue: the user can assess the consistency of input 
vector y  through a status index and immediately return the control to the 
solver. In this case, DASPK reduces the step size and checks again the 
convergence within the corrector, but if the integration routine, at the last 
successful thn  step  , has found 0n

iy =  and ( ) 0n
iy′ <  then any predictor action 

on the following ( )1 thn +  step will be negative: 1
, 0n

i predictory + <  inducing 
DASPK to reduce the step size indefinitely, until it finally aborts the 
integration procedure due to a step size 0h → . The correct approach to the 
constrained problem should come from the DAE solver in terms of decisions 
to be made at each step of the integration procedure. This is the only way by 
which the DAE system routine is safe and math errors are avoided a priori. 
Actually, the BzzDae user (if required by the problem’s nature) simply 
assigns the maximum and/or minimum constraint vectors. The solver 
automatically handles the constraints, taking care not to violate the assigned 
bounds. The control is performed before passing any illegal values to the 
DAE system routine. The correction vector, b , is accepted only when the 
nonlinear system, resulting from the DAE problem, is accurately solved 
within the assigned precision and, at the same time y  complies with the 
constraints. By doing so, the DAE function is always computed with safe y  
values. 

2. BzzDae adopts a stabilization technique when repeated convergence failures 
occur. The integration order is automatically reduced to one and the DAE 
solver restarts from the last successful convergence point. By doing so, the 
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numerical problem becomes completely consistent as shown in detail in [9] 
and [12]. 

3. Both the order and step size are reduced when there are convergence 
problems. 

4. As suggested by Brenan et al. [16] the order is reduced when the elements of 
the Nordsieck vector are not decreasing. 

On the efficiency side BzzDae is characterized by the following features: 
1. As it happens within DASPK, and contrary to LSODI, there is a distinct 

memory allocation for both the Jacobian matrix, J , and its factorization 
)( 0JIG hr−= . A direct consequence of such a feature is an overall efficiency 

improvement since when a different step size or method order is chosen, 
there is no need to reevaluate the Jacobian matrix, J , and then superimpose 
its factorization, G , which is needed by the non-linear system solver based 
on the Newton method. Most of the DAE chemical problems have the 
following characteristics: (1) each function evaluation (DAE system) is 
highly time consuming, (2) the Jacobian matrix, J , is evaluated numerically 
by finite differences, (3) the number of equations is quite relevant. From this 
point of view, it is evident that the function evaluations have the greatest 
impact on the CPU time [17]. The Jacobian evaluation becomes more and 
more exacting when the equations number increases. 

2. BzzDae follows a different criterion with respect to DASPK in determining 
when to update the Jacobian matrix. The first significant difference is that 
BzzDae checks whether J  is out of date through the following equation: 

1 1 1( ) f ( )n n n n t n nt t+ + +′ ′≅ + ⋅ − + ⋅ −y y J y y , where nnnn yyyy ,,, 11 ++ ′′  are the variables 

at the thn  and ( )1 thn +  iterations and tf  is the time derivative of the DAE 
system. When the equations number, eqn , is high, the Jacobian numerical 
evaluation is rather time consuming so it is advisable to delay the update of 
J  as far as possible. Conversely, if the system has few equations, it is 
convenient to evaluate J  more frequently in order to increase the Newton 
method efficiency with a reduced effort. Due to these considerations, BzzDae 
evaluates a new Jacobian matrix at most after m  steps, with m  being a 
function of eqn . Since the Jacobian consistency is controlled in a deeper and 
more accurate way, respect to the conventional DAE routines, it is also safer 
to increase the maximum allowed number of steps performed, by keeping the 
Jacobian matrix constant. 

3. DAE systems characterized by sparse and not necessarily structured Jacobian 
matrices can be easily solved by exploiting the automatic memory allocation 
and matrix rearrangement of the C++ classes. 

The aforementioned features improve the overall performance of BzzDae when 
dealing with problems characterized by: 
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• DAE systems with Jacobian matrices having complex λ  eigenvalues with 
negative real parts 0)Re( <λ  and large imaginary parts 1)Im( >>λ . 
Physically speaking this means: highly oscillating problems; 

• DAE systems with large discontinuities in the derivatives (i.e. discontinuous 
or piecewise physical properties, IF … THEN structures, code branching); 

• DAE systems that require constrained integration variables, i.e. the 
dependent variables, y , must belong to a feasible interval defined by lower 
and/or upper bound vectors. 

In contrast with the DASSL/DASPK approach, BzzDae normalizes the 
algebraic portion of the Jacobian matrix by the step size: h . With reference to 
the Jacobian matrix, G , of the non-linear system, the BzzDae formulation 

exploits the following structure: 
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as opposite to the DASSL/DASPK structure: 
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where: 1y  are the differential variables, 2y  are the algebraic variables, h  is the 
stepsize and 0r  is the first coefficient of the Backward Differential Formula 
method. Brenan et al. [16] suggest to divide the algebraic equations for a 
constant proportional to h . The DASPK guidebook [11] suggests to multiply 
the algebraic equations by a constant which is proportional to the inverse of the 
stepsize h . Since the second row elements of the original G  matrix are 
multiplied by h , it is correct and advisable to automatically simplify such 
elements through an a priori division by h . This simple trick significantly 
increases the robustness and precision of the solver. 

3. Conclusions 

When addressing DAE problems, it is very advantageous to make use of 
dedicated DAE solvers while avoiding any decoupled implementation of the 
differential and the algebraic portions. The performance losses are evident when 
solving the algebraic portion inside the ordinary differential system. 
A further relevant aspect refers to the boundaries on the integration variables. 
As a matter of fact, the direct manipulation made by the solver itself of the 
lower and upper limits within the predictor/corrector steps is a critical feature in 
terms of both robustness and efficiency. Robustness and efficiency are not two 
antithetic terms. Conversely, when the numerical solver encompasses a crisis, 
during the DAE integration, the increment in robustness is tightly coupled to a 
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performance enhancement. In this sense a robust numerical routine should be 
able to debottleneck several stagnant situations. 
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