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Abstract 
The high development costs, low probability of success and intensive competition faced 
by pharmaceutical companies make management of their product pipelines a high risk 
undertaking. The strategic decision involving the selection of the particular set of drugs 
to be developed has implications that affect the behavior of the pipeline for years. While 
recently reported research has captured the stochastic character of the pipeline, to date 
no methodology has explicitly included the impact of operational policies in the 
selection process. In this work, a multi-level Sim-Opt strategy is used to assess the 
effect of resource allocation on risk and rewards. Product sequences generated by a GA 
are statistically evaluated using a probabilistic network model. The model includes all 
the tasks that have to be accomplished in order to release a new drug into the market. 
The resources assigned to each drug in each task are rebalanced by an optimal policy 
every time a project fails and at the end of each year. Based on the results a reward-risk 
frontier is constructed and compared to the one generated when no reactive allocation is 
considered. Results show that the inclusion of this additional degree of freedom in the 
decision process causes a significant change in the portfolio mix. 
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1. Introduction 
Portfolio management is a dynamic decision process, that provides the framework in 
which senior management operationalizes its business strategy. The future directionality 
of such a strategy is translated into the R&D portfolio. However, the presence of 
uncertainty, multiple objectives and decision makers, project interdependencies and a 
constantly changing environment makes that translation a very difficult process. A wide 
variety of methodologies has been proposed to facilitate this process (Cooper et al., 
1999). In spite of the differences, all of them share one characteristic: the implicit use of 
a decomposition philosophy. The problem is broken down into different independent 
hierarchical levels, where each level uses a set of data and models whose degree of 
aggregation depends of the scope of the corresponding level. Intuition suggests that 
such an approach is valid when the project execution process tends to be deterministic. 
However in the highly dynamic and constrained environment of R&D (projects fail, 
uncertainties are reshaped by internal changes and the surrounding environment, 
resources are not easy to replace, etc.) the answer is not so clear. Under these 
conditions, optimal strategic decisions may require the integrated consideration of key 
aspects of the tactical and strategic levels. Sensitivity analysis is sometimes 
implemented to assess the impact of using aggregated data. However, the results 
obtained by this strategy present two major pitfalls. First, the interdependencies between 
the projects are not captured. And second, completely different portfolio realization 
paths at the tactical level, with their corresponding rewards and risk levels, can be 
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obtained for the same set of aggregated values. This study explores the implications of 
the choices at the tactical level on the selection and prioritization of new products in the 
R&D portfolio of a pharmaceutical company. 

2. Tactical vs. Strategic Decisions 
The development of decision support strategies and systems for managing an R&D 
portfolio date back to the 60s. Since then it has become evident that R&D portfolio 
management is about minimizing risk while maximizing an objective or a set of 
objectives in the presence of constraints (Baker, 1975). In order to accomplish this goal 
many decisions have to be made at different levels in the organization. Depending on 
their scope they can be classified in two groups: strategic or tactical. Both of them imply 
the allocation of resources; the only difference is that the first group determines the 
objective, while the second one leads to it. At the strategic level some techniques were 
developed to support the selection of projects and their priority in the portfolio  (Blau et 
al., 2004; Lin and Hsieh, 2004; Raynor and Leroux, 2004; Rogers et al., 2002). Others 
concentrated on the selection of one project from a group of candidates (Calantone et 
al., 1999; Loch and Bode-Greuel, 2001). At the tactical level, the focus has been on 
scheduling and allocating resources to activities within the projects (Maravelias and 
Grossmann, 2004; Subramanian et al., 2003). Regardless of the scope, all these 
methodologies are based on one of two paradigms, quantitative or qualitative. Real 
options, decision trees, discrete event simulation, mathematical programming, etc are at 
the core of quantitative decision support systems (Loch and Bode-Greuel, 2001; 
Maravelias and Grossmann, 2004; Raynor and Leroux, 2004; Subramanian et al., 2003). 
On the qualitative side the focus has been the direct translation of the decision makers’ 
knowledge into portfolios and priorities. For that purpose, a wide spectrum of 
techniques that range from checklists to fuzzy theory have been used (Cooper et al., 
1999; Lin and Hsieh, 2004). In spite of all the methodologies developed, quantitative 
and qualitative, none of them consider both decisions levels at the same time nor 
provide evidence to support the validity of the decomposition strategy. 

3. Portfolio Optimization 
The pharmaceutical industry provides one of the most challenging areas in terms of 
R&D portfolio management. Regardless of the type of product, small molecule 
chemical compound or complex protein, the industry faces long development times, low 
success rates, very high investments and considerable uncertainty in sales revenue 
estimates (Blau et al., 2004; Loch and Bode-Greuel, 2001). It is thus a perfect testing 
ground for any stochastic decision support methodology. 
There are three major stages in the lifecycle of a new drug: discovery, development and 
commercialization. The discovery stage is highly unpredictable and case specific, while 
the other two generally follow a well defined activity path. Also, the typical situation in 
the pharmaceutical industry is that there are seldom enough renewable and 
nonrenewable resources available to develop all the lead compounds in the pipeline at 
the same time. Therefore, all the attention from a portfolio management perspective is 
given to the development and commercialization stages. They are divided in the 
following sequential activities: First human dose preparation, clinical trials I, II and III, 
first submission for approval, prelaunch, ramp us sales, and mature sales. Paralleling 
these activities are all the engineering and marketing related tasks. For a thorough 
explanation of each of the activities the reader is refered to Blau et al (2004).    
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3.1. The portfolio management problem 
In this study a multi-level optimization version of the SIM-OPT architecture developed 
by Subramanian et al (2003) is used to solve the portfolio management problem under 
constrained renewable resources. SIM_OPT combines discrete event simulation and 
optimization (Fig. 1). The inner loop contains a model of the process and an optimizer 
that is activated every time an event (i.e. project failure) takes place during the 
simulation. The outer loop optimizer makes higher order decisions based on the 
information collected from multiple runs of the inner loop.  In the realization of the 
SIM-OPT architecture employed in Blau et al (2004) only the outer loop is included. A 
genetic algorithm (GA) is used to optimize the selection of drug candidates, while the 
discrete event simulation model, which is a complete representation of the probabilistic 
pipeline network, is used to evaluate the candidate selection and sequencing alternatives 
generated by the GA. In their work Blau et al (2004), which we call  the base case, used 
the project sequence generated by the GA to determine the order in which projects are 
started in the development pipeline, as well as the priorities of the activities within 
projects and the resources allocated to them, regardless of the specific realizations of the 
uncertainties in the system. It follows the aggregation concept characteristic of the 
reported decision support methodologies. In our study Blau’s work is extended by 
including an inner loop  to reallocate the renewable resources every time a project fails, 
and refining the GA. In the extended model the portfolio and the priorities generated by 
the GA are used as starting point to allocate resources and schedule activities. However, 
those decisions are dynamically updated by an optimizer according to the resolution of 
uncertainties at the key termination points in the activity network. The optimizer is a 
decision support system developed by Varma (2005) that maximizes the expected 
economic return by collecting the most up to date system data and processing it through 
a series of control policies learned by running the model multiple times using a short 
time window  3 mode (upper, most likely and lower) resource allocation MILP.  

Outer Optimization

Inner Optimization

Process Simulator

Trigger Event

 
Fig 1.  Sim-Opt Architecture 

3.2. Outer loop (GA) 
The same GA strategy is used for the base case and the extended model trial runs. 
Following Blau et al (2004) the portfolios are encoded in such a way that each gene 
contains the number of a drug candidate (with 0 indicating that a project was not 
selected), and its position in the chromosome represents the priority given to the project. 
The fitness function, Zk, is given by: 
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Where EPNPVmin and EPNPVmax are the minimum and maximum expected positive net 
present values, respectively, in the current population; Riskmin and Riskmax are the 
maximum and minimum risk levels in the current population, measured as the 
probability of losing money; γ is a small positive number that prevents division by zero, 
and α weights the present value vs. the level of risk in a convex linear combination. The 

Blau’s reproduction strategy within the GA algorithm caused the optimization to be 
trapped in a specific area of the search space. Therefore, an additional mutation operator 
was included to overcome this problem. The operator randomly changes some of the 
genes in the following way: If the gene holds a value, the corresponding project is 
abandoned, and if it is empty a project is randomly reentered into the portfolio. In 
addition to correcting the myopic behavior of the original GA, this adjustment also 
makes the algorithm very robust to changes in the initial population. Therefore, the risk 
of biasing the algorithm in the wrong direction from the start, due to the inadequate 
selection of the initial population, is considerably reduced.      

 
3.3. Inner loop (Scheduling and resource allocation) 
Once the portfolio and the priorities of the projects have been identified, it is necessary 
to schedule the activities within a project and allocate resources to them. In the base 
case it is assumed that the priority sequence obtained for the projects applies to every 
activity, and the level of resources assigned is the most likely (ML) one according to the 
degree of difficulty of the project. The multi-level SIM-OPT strategy, refered as the 
extended case, on the other hand, follows an adaptive approach in which activities are 
scheduled based on the GA sequence, but resources assigned to a particular task are 
dynamically increased or decreased to speed up or slow down a project in response to 
events such as terminations or launches according to certain policies. The resource 
allocation control policies were obtained following the SIM-OPT framework conceived 
by Varma,(2005), which used an architecture in which there are two loops. The inner 
loop contains the discrete event simulation of the development and commercialization 
activity network and a resource allocation MILP. The outer loop includes an observer 
that learns the optimal static policy, while the inner loop is run hundreds of times with 
the MILP as the resource allocation decision maker. The state space for each drug in the 
policy is defined as: {DS(i), NLEV(i), NHEV(i)}, where DS(i) = Development Stage of 
Drug i, NLEV(i) = Number of drugs having Lower Expected Value than drug i in the 
same development stage, and NHEV = Number of drugs having Higher Expected value 
than drug i in the same development stage. The control space is a vector that has as 
many elements as there are projects in the portfolio. Each element can take only one of 
3 values, which correspond to upper, ML and lower resource allocation; that are 
associated with three different levels of duration for each task. Finally, it is relevant to 
mention that Varma (2005) explored the use of a MRCPSP MILP in the inner loop to 
consider the impact of a reactive schedule on top of the dynamic allocation of resources. 
However, it was shown that the difference between this more computational expensive 
approach and the allocation only MILP was not significant.  
 
3.4. Case study 
The same 9 drug portfolio case study reported in Blau et al (2004) is used. Most of the 
statistical distributions and parameters for the model were replicated. The only changes 
were in the duration and cost distributions, which were fixed at their most likely values. 
This was necessary due to the lack of data for the same distributions at higher or lower 
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resource allocation levels. The interactions between projects, as well as the simulation 
philosophy were also retained. Finally, the same financial, technical, manufacturing cost 
and resource dependencies for drugs aimed to diseases I and II were included. It is 
important to highlight that in spite of the simplifications in the discrete event 
simulation, the results are not significantly affected. The influence of fixing the duration 
and cost distributions is strongly dominated by the uncertainties retained in the model.  
The base and extended case results for this study were obtained using the improved 
version of the GA with multiple  weights  (0, 0.5, and 0.8), and a population size of 10. 
However the values of some of the parameters of the mutation operators were 
individually adjusted to prevent the algorithm from converging prematurely.  
The resource allocation levels for the inner loop in the extended case were identified 
from suggestions provided by managers in the industry. The upper and lower levels 
correspond to using ±15% resources than the ML, while inversely changing activity 
duration by ±7.5%. Those flexibility values were doubled in a second run to better 
understand the implications of decisions made at the tactical level within different 
managerial frameworks.  

4. Results  
The return as measured by the EPNPV and the probability of losing money (portfolio 
risk) for the base case are presented in Fig. 2. All the points corresponding to the 
maximum EPNPV for a given level of risk are linked to form an approximate return-
risk frontier. At first sight it looks like its shape reflects the general form found by 
Markowitz in financial portfolios (Luenberger, 1998), but a closer look reveals that the 
direct correlation between return and risk is violated in the middle section. The number 
of projects in the portfolios in that area is considerably higher than the number of those 
on the rest of the frontier. That demonstrates that the base case can not capture the trade 
off between the inclusion of more projects to reduce the level of risk due to failure, and 
the reduction in returns due to developmental delays, caused by exceeding the limits of 
available resources. Fig. 3 (only the dominating portfolios are plotted) shows that the 
addition of resource allocation flexibilities mitigates the effect of this trade off and 
pushes the frontier to higher returns for the same risk levels. This result can be 
explained from a conceptual point of view as follows. The lower or higher level of 
resource allocations constitute real options to delay or to expedite, which means that 
some of the flexibilities in the decision process where captured with a consequent rise in 
the value of the portfolios. However, the composition of the portfolios on the frontier in 
the base case and the extended one is remarkably different in the area where the 
depression is found. The extended case efficient portfolios can not be obtained by 
simply adding projects to the base case results. This demonstrates that it is not possible 
to decouple the strategic and tactical decision making processes at certain levels of risk. 
It was also found that the inclusion of flexibilities does not guarantee the improvement 
or sustainability of the performance of a specific portfolio. It was even found that the 
results of some interior portfolios from the base case completely dominate those 
observed in the extended cases.  Most of the time the portfolio chosen at the strategic 
level is in the interior region, which means that its behavior is completely unpredictable 
based on aggregated quantitative or non quantitative methods. Finally, it is important to 
mention that the GA converges much faster in the extended cases than in the base case. 
Based on the progression of the algorithm we believe that such a behavior is due to the 
reduction in the search space. The inclusion of flexibilities decreases the importance of 
the position of the projects in the sequence. Therefore, what really matters in the initial 
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generations is the presence of the projects that in later generations will be reordered to 
obtain the optimal solution.  
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Fig 2. Efficient frontier base case                   Fig 3. Efficient frontier extended cases 

5. Conclusions 
The study demonstrated the use of a multi-level Sim-Opt strategy to determine an 
optimal portfolio of new drug candidates. It has shown that the use of aggregated 
strategic decision models in the presence of uncertainties, project interdependencies and 
constraints can be misleading. It also has shown and quantified the importance of 
considering flexibilities in the valuation of projects. Although the approach is 
computationally demanding, it is an important tool to help management understand how 
tactical and strategic decisions are inter-related in order to maximize portfolio returns at 
specific levels of risk.  
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