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Abstract 
Risk management for multi-stage capacity expansion optimizes average return and risk 
simultaneously. None of the existing algorithms for stochastic dynamic programming 
can accommodate general risk measures. Algorithms based on simulation based 
optimization are proposed in this research to address arbitrary risk measures for multi-
stage risk management in capacity expansion. These algorithms utilize multi-stage a 
back-propagation scheme and function approximation techniques. Their effectiveness is 
demonstrated by applying them to a pharmaceutical product pipeline case study.  
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1. Introduction 
Strategic capacity decisions are positioned at the top of the hierarchy of supply chain 
management decisions. Under the risk management framework, the expected return of a 
capacity decision is simultaneously optimized with the risk of the decision weighted by 
a risk aversion parameter, where the risk is quantified in terms of variance, semi-norm, 
value-at-risk etc. It has been proven that stochastic math programming is limited to non-
decreasing risk measures, and not applicable to general risk measures (Takriti and 
Ahmed, 2004). Cheng et al. (2003, 2004a, 2004b) solve the multi-stage risk 
management problem in capacity expansion through exploring the special property of a 
separable risk measure; However, the back-propagation scheme for dynamic 
programming used therein cannot accommodate non-separable risk measures. In this 
research, new techniques based on simulation based optimization are proposed to 
address multi-stage capacity expansion problems for arbitrary risk measures and are 
applied to a pharmaceutical product pipeline case study. 

2. Algorithms for risk management in dynamic optimization main text  
The proposed algorithms extend the Bellman equation of stochastic dynamic 
programming. Two underlying fundamental components are multi-stage back-
propagation and function approximation of simulation results. For a dynamic problem 
with T stages, let s be the state space, x be the decision, ω be the random event, a 
pseudo-utility function is defined as follows: 

[ ]),(−)))((+),,((Ε=) 1+ xsssxsfs
xt τττττ λω RVmax(U  (1) 

where )))((+),,((Ε 1+ ττττ ω ssxsf V is exactly as in the Bellman equation with f(ּ) being 
the immediate return and V(ּ) being the value function, ), xsτ(R  denotes the risk of 
making decision x at state sτ andλis the risk aversion parameter. The pseudo-utility 
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function is a natural extension of the value function to incorporate risk associated with 
each state. It represents the desirability of states in the risk management context. 
 
In the Bellman equation, the value function at stage t can be obtained by observing the 
value function at stage t+1, through the typical one stage back-propagation scheme. 
However, the pseudo-utility function at stage t generally cannot be calculated this way 
unless the risk measure in Eq. (1) is separable (Li, 1990).  For non-separable risk 
measures, calculation of the pseudo-utility function at stage t requires all the 
information at the final stage T. The corresponding computational scheme is called 
multi-stage back-propagation in our study in view of the one stage scheme used to solve 
the Bellman equation. 
 
For most capacity expansion problems, it is impossible to solve Eq. (1) analytically: 
simulation based optimization (Fu, 2002) is the only feasible method. At each state in 
the simulation, a stochastic optimization problem (Eq. (1) ) must be solved to obtain the 
optimal actions. As the number of states is usually extremely large, function 
approximation is necessary to mitigate the prohibitive computational burden. The 
strategy is to generalize the observed simulation results of a sample to the whole space 
by building an approximation function using the observed sample. Such a strategy has 
been used to approximate the value function in the Bellman equation to overcome the 
curse-of-dimensionality (Bertsekas and Tsitsiklis, 1996). 
2.1. Revised back-propagation algorithm  
The pseudo-utility function in Eq. (1) is not amendable to function approximation as no 
capacity decisions can be derived from knowledge of the function. For purpose of 
reducing the computational difficulty, we define a state-action pseudo-utility function as  

),(−),(=), xsxsxs RQ(U λ  (2) 

where Q(ּ) is the expected return for making decision x at state s. The optimal decision 
for a state s can be found through  

),(Umaxarg* xsx
x

=  (3) 

Define a random vector τΨ = ),, Νωωτ( , i.e. τΨ  represents the random events that 
occurred between τ and T. Then the revised back-propagation algorithm for dynamic 
risk optimization is as follows: at the decision time τ  
1. Sample m state-action pairs and obtain mzxs zz ,1,=),, ττ( .  
2. For each pair ), zz xs ττ( , generate realization nii ,1,=,Ψτ ; simulate the n 

realizations from τ to T. For each realization, at the decision point τ'>τ, given the 
state is 'τs , take action 'τx  according to  

),(U~maxarg ''' xsx
x

τττ =  (4) 

Where ),(U~ '' xs ττ  is the approximated state-action pseudo-utility function for time 
τ'. After compiling the results of the n simulations, compute the expected 
return ),( zz xs τττQ , the risk ),( zz xs τττR , and the pseudo-utility ),( zz xs τττU  with  

),(−),(=), zzzzzz xsxsxs ττττττ λRQ(U  (5) 
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3.  Fit an approximate state-action pseudo-utility function (⋅,⋅)τU~  based on the m 
points mzxs zz ,1,=),, τττ (U . 

 
The multi-stage back-propagation principle is reflected in step 2 where simulation is 
conducted from τ to T instead of from τ to τ+1 as in the one stage back-propagation. 
This algorithm builds T-1 approximation state-action pseudo-utility functions, one for 
each stage except for stage T. Those approximate functions greatly reduce the 
computational overhead since a deterministic optimization problem represented by Eq. 
(4) is solved instead of the much more complex stochastic optimization problem 
represented by Eq. (1) at each state in the simulation. 
2.2. Optimal policy approximation algorithm 
The number of deterministic optimizations in the form of Eq. (4) in the revised back-
propagation algorithm is proportional to the number states visited in the simulation, thus 
the curse-of-dimensionality persists. The following optimal policy approximation 
algorithm tackles the dimensionality issue with another level of function approximation. 
 
In stochastic dynamic programming, a policy is a function returning optimal actions for 
any state. Let )(Π sτ

~  denote the approximation optimal policy at the decision time τ, 
then for the decision time τ 
1. Sample m state-action pairs and obtain mzxs zz ,1,=),, ττ( . 
2. For each pair ), zz xs ττ( , generate realization nii ,1,=,Ψτ ; simulate the n 

realizations from τ to T. For each realization, at the decision point τ'>τ, given the 
state is 'τs , take action 'τx  according to 

)(Π= '''
~

τττ sx  (6) 

 After compiling the results of the n simulations, compute the expected 

return ),( zz xs τττQ , risk ),( zz xs τττR , and pseudo-utility ),( zz xs τττU  using  

),(−),(=), zzzzzz xsxsxs ττττττ λRQ(U   

3. Fit an approximate state-action pseudo-utility function (⋅,⋅)τU~  based on the m 
points mzxs zz ,1,=),, τττ (U . 

4. For each state mzs z ,1,=,τ , find its optimal action )( zz sx ττ  via 

),(=)( xssx z
x

zz ττττ U~maxarg  (7) 

Fit an approximation optimal policy function )(Π sτ
~  with the m points 

))(, zzz sxs τττ( , z=1,⋅⋅⋅,m. 
 
In this algorithm, T-2 approximate functions for optimal actions are built from stage 2 
to state T-1. The number of deterministic optimization performed in the form of Eq. (7) 
is O(T×m), which is independent of the number of states visited in the simulation. As a 
result, the curse-of-dimensionality is avoided. In our research, least squares support 
vector machine (LSSVM) (Wan et al., 2005) is adopted to build all the approximation 
functions. 
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3. Risk management in pharmaceutical capacity expansion 
When a pharmaceutical company expands its manufacturing capacity upon new drugs 
exiting its development pipeline, it may increase the capacity just enough to meet the 
forecasted demand or it may purchase more capacity for future drugs to reduce the setup 
cost. However, purchasing capacity for future drugs inevitably incurs risk: the capacity 
may not match the demands of the future drugs, extra-capacity will reduce the return of 
investment, while a capacity shortage will necessitate another purchase which incurs an 
additional undesirable setup cost. The uncertain exit time of future drugs may also make 
it cost effective to perform additional capacity expansion. Other important factors 
include competitors: there exists the possibility that competitors will enter the market in 
the future to take away part of the demand. The right capacity level can only be 
identified through solving a multi-stage risk management problem. 
3.1. Case Study: Capacity expansion in a pharmaceutical company 
A pharmaceutical company A has a new drug (P1) exiting its development pipeline at 
the beginning of the horizon, and the initial available capacity is 0. The demand for the 
drug is stationary, following a normal distribution N (20, 9) in each period. The total 
horizon considered is 40 periods. Within the horizon and with a probability 0.5, a 
second new drug (P2) will exit the pipeline. The exit time follows a triangular 
distribution Tri (10, 20, and 30). The demand for the second drug is also stationary; 
with normal distribution in each period with mean N (20, 9) (i.e. the mean demand is 
uncertain) and the coefficient of variation the same as that of the first drug. Assume the 
second drug is similar to the first drug: they have the same production cost, market 
price, etc. A single competitor B exists whose product will share the demand of the first 
drug if it enters the market but does not affect the demand of the second drug. The 
arrival of B’s product follows an exponential distribution with expected arrival time 45. 
If B enters the market, its product will take away normal distributed market share N (0.4, 
0.01) from A’s first product. 
3.2. Implementation of the optimal policy approximation algorithm 
As shown in Fig. 1, this case problem is a dynamic optimization problem with capacity 
decision at 0 and t2, and contingent production decisions at each period. In accordance 
with the proposed optimal policy approximation algorithm, the problem is approached 
as follows: sample the state-action space at t2, build the state-action pseudo-utility 
function and consequently the state-optimal action function (i.e. the policy) after 
simulating the sampled points; sample the state-action space at 0, simulate and build the 
corresponding state-action pseudo-utility function; obtain the optimal capacity decision 
at 0 by optimizing the corresponding state-action pseudo-utility function. The default 
number of sampled points is 40 for the first stage and 650 for the second stage; the 

 t t+1 

Demand

P1 arrives at 0 P2 arrives at t2

A competitor arrives  Produce & 
 fill demand  

Figure 1: Scheme of the case problem
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default number of sample path simulated for each sampled point is 4000. Those default 
numbers are chosen such that they provide satisfactory results for this case, and there is 
no significant improvement with larger values. 
 
The implementation of the revised back-propagation algorithm is similar to the above 
procedure except that the state-optimal action surrogate model is not constructed and a 
deterministic optimization problem is solved at t2 while simulating a sample path from 0 
to T. 
3.3. Results and discussion 
For the non-separable risk measure semi-norm, Fig. 2 shows that the optimal decisions 
for NPV and semi-norm are 26 and 22 respectively when λis equal to 0.001, indicating 

Figure 2: NPV and semi-norm of the    
 first stage capacity decision 

Figure 3: NPV and semi-norm efficient frontier 

Figure 5: The effect of the demand variance 
on first-stage capacity decisions 

Figure 4: Optimal first-stage capacity 
decisions under different risk aversion 
parameters 
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that the optimal decision for pseudo-utility must lie between 26 and 22 to balance their 
trade-off.  For other values of λ, there will be similar relations between the first stage 
capacity and the NPVs as well as the semi-norms, from which the corresponding 
optimal decisions together with the NPVs and semi-norms under these decisions can be 
calculated. The results are presented as the efficient frontier in Fig. 3.  This figure 
simply states that capacity expansion under dynamic conditions demonstrates the NPV 
and risk trade-off, well known in stock portfolio management: higher NPVs are 
necessarily associated with higher risks. 
 
Fig. 4 shows that the optimal first-stage capacity level decreases as the risk aversion 
parameter increases to avoid the risk of lower demand either due to possible arrival of 
the competitor or non-materization of expected future drugs. Fig. 5 studies the effect of 
demand variance under different risk aversion parameters on the first-stage capacity 
level. Clearly, larger demand variances lead to higher capacity levels to avoid the cost 
of missing demand. 

4. Conclusions 
Two algorithms are proposed for risk management in dynamic optimization based on 
multi-stage back-propagation scheme and function approximation. The algorithms are 
the first of their kind to be valid for arbitrary risk measures. Their effectiveness is 
illustrated by computing the NPV vs. risk efficient frontier for a dynamic capacity 
expansion case problem. 

References 
Bertsekas, D. P., Tsitsiklis, J. N., 1996. Neuro-dynamic programming. Athena Scientific. 
Cheng, L., Subrahmanian, E., Westerberg, A. W., 2003. Design and planning under uncertainty: 

issues on problem formulation and solution. Comp.  Chem. Engng. 27, 781–801. 
Cheng, L., Subrahmanian, E., Westerberg, A., 2004a. A comparison of optimal control and 

stochastic programming from a formulation and computation perspective. Comp.  Chem. 
Engng 29(1). 

Cheng, L., Subrahmanian, E., Westerberg, A., 2004b. Multi-objective decisions on capacity 
planning and production-inventory control under uncertainty. Ind. Eng. Chem. Res. 43, 2192–
2208. 

Li, D., 1990. Multiple objectives and non-separability in stochastic dynamic programming. 
International Journal of System Science 21 (5), 933–950. 

Fu, M. C., 2002. Optimization for simulation: theory vs. practice. INFORMS Journal on 
Computing 14 (3), 192–215 

Takriti, S., Ahmed, S., 2004. On robust optimization of two-stage systems. Mathematical 
Programming 99, 109–126.  

Wan, X., Pekny, J. F., Reklaitis, G.V., 2005. Simulation-based optimization with surrogate 
models—application to supply chain management. Comp. Chem. Engng 29 (6), 1317-1328 

 

X. Wan et al.1886


