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Abstract 
Transport and separation processes in ionic systems located in the porous medium are 
investigated. The software for the modeling of the combined electroosmotic, migration, 
diffusion and pressure driven flow in the spatially 2D or 3D porous medium has been 
developed. This software allows to determine the mapping from the parametric space of 
the porous structure and distribution of fixed charge into the space of application 
properties such as ionic permselectivity or perfusion flow. Software capabilities are 
illustrated on case studies of systems where the Debye length is either comparable or 
negligible with respect to the characteristic pore size. The concept of the reconstructed 
porous medium has been employed to represent the morphology. 
 
Keywords: ionic system, permselectivity, reconstructed porous media, electroosmotic 
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1. Introduction 
Porous media of various types are involved in practical applications involving ionic 
electrolytes, e.g., capillary electrochromatography (CEC), nanofiltration, electrodialysis, 
fuel cells and other membrane applications. One of the important practical problems is 
to find the relation between the micro-structure of porous media, the distribution of 
concentrations of ions and the electroosmotic flow through the porous media. Another 
practical problem is the prediction of the permselectivity of membranes from their 
known structure, from the distribution of fixed charge in the membrane and from the 
concentration of the electrolyte. We have applied the methodology of the reconstructed 
porous medium and employed the solution of the Navier-Stokes, Poisson and mass 
balance equations to address the above mentioned problems. 

The� previous� attempts� to� describe� and� model� the� electroosmotic� flow� in�
general� porous� media� followed� one� of� three� principal� methodologies� forced� by�
computational� feasibility� and/or� introduced� idealization� of� the� original� system:�
(i)�digitally� reconstructed� porous� media� with� negligible� Debye� length� [1],�
(ii)�network�models�of�inter-connected�cylindrical�pores�[2],�and�(iii)�reduction�to�
effective-scale�(averaged)�1D�models�or�models�with�simple�geometry,�such�as�2D�
cylindrical�model�[3].�

2. Reconstructed porous medium 
Spatial distribution of phases can be represented in the general case by the so called 
phase function fi : R3  {0;1} for each phase i. The phase function of the pore phase is 
defined as [4] 
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By definition only one phase can be present at any point r ∈ R3. In a discrete form the 
phase function fg(r) becomes the phase volume function which assigns each finite 
volume element of space (voxel) a value from the set {0;1}. In a practical 
implementation the domain on which the phase volume functions are specified is 
typically a cubic grid of Nx × Ny × Nz voxels, cf. Figure 1. Such a region of real space is 
called the computational unit cell. The relationship between the unit cell and the porous 
medium of interest depends on the absolute dimensions of the medium and on the 
spatial resolution at which the medium is represented (feature dimensions). The unit cell 
can either contain the entire medium plus some void space surrounding it, or be a 
sample of a much larger (theoretically infinite) medium. In the latter case the 
dimensions of the unit cell must be such that the unit cell is statistically representative 
of the entire medium. 

 

(a)   (b)  
Figure 1. (a) Porous slot, section of Fig. 1b.; black color is pore and blue color is solid. 

(b) Reconstructed granular medium. Periodic boundary conditions. 
 

The reconstruction of the porous/multi-phase medium is the process starting from 
the image obtained by the electron microscopy or by other imaging techniques, 
followed by the evaluation of the suitable morphological descriptors of the image, and 
concluding by the generation of the spatially 3D porous/multi-phase medium with the 
same morphological characteristics as those of the original image. In mathematical 
terms, given the porosity and the suitable morphological characteristics, we want to 
reconstruct the replica of the porous medium represented by the phase function fg(r) 
defined on the discrete grid of voxels with coordinates r. The overview of several 
algorithms of the stochastic or diagenetic reconstruction of the porous media is available 
in [5]. The reconstructed porous medium is then used as the input for the calculation of 
effective transport, mechanical and electric properties of the medium [6], or as the input 
for the modeling of various reaction, transport and transformation processes. 

3. Model equations 
Stationary distributions of velocity and pressure for the incompressible liquid are 
obtained by the solution of the continuity and Navier-Stokes equations 
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where v is the velocity, ρ is the density, p is the pressure, η is the dynamic viscosity, 
q is the charge density and φ is the electric potential. The term (– q∇φ) is the electric 
force acting on the unit volume of the fluid. The charge density q is the linear 
combination of concentrations of ions ci , 
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where F is the Faraday constant and zi is the charge number of the i-th species. Local 
electroneutrality assumption (q = 0) usually holds in the bulk electrolyte far from 
charged surfaces. 

In the system with the Debye length comparable with the characteristic pore size, 
the distribution of the electric potential is obtained from Poisson equation 
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where εr and ε0 are the relative and absolute permittivity. 
The steady state local balance of species i in the ionic system without chemical 

reaction is considered in the form 
 ,)/(with,0 φ∇−∇−==⋅∇ iiiiiiii cDzRTFcDcvJJ     (4) 

where Ji is the molar flux intensity of the i-th species defined by the Nernst-Planck 
equation, Di is the diffusivity of the i-th species, R is the gas constant and T is the 
temperature. The balance (4) is considered for all species, i = 1,…, N . 

The system of equations (1)–(4) with appropriate boundary conditions for the set 
of state variables {p, v, φ, q, ci} is solved. The boundary conditions at the surface of the 
solid phase are 

 ,,...,1,0,)/(,0 0 Niir ==⋅=∇⋅=⋅ Jnnvn εεσφ     (5) 
where n is the local outer unit normal vector of the solid phase and σ is the surface 
charge density. The conditions on the boundary of the computational domain depend on 
the considered case: (i) boundary conditions (5) are applied for the impermeable wall 
with immobilized zero or non-zero surface charge density, (ii) Dirichlet boundary 
conditions, or (iii) periodic boundary conditions. For example, Dirichlet boundary 
conditions on the left and right boundary of the computational domain are 
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When the Debye length is negligible when compared to the characteristic pore size, 
e.g., in the case of highly concentrated electrolytes, the grid required to solve the model 
equations (1)–(4) in the vicinity of the solid phase with a non-zero surface charge 
density σ would have to be very fine. In an alternative approach the very thin electric 
double layer is excluded from the computational domain, so the electric term (– q∇φ) in 
eq (1) is not considered and local electroneutrality assumption (q = 0) holds in the 
electrolyte. The set of state variables reduces to {p, v, φ, ci}, and the system is described 
by the modified eqs (1’), (2’) and by eqs (4), 

 ,)(
,0

2vvv
v

∇+−∇=∇⋅
=⋅∇

ηρ p          (1’) 

 ∑=
i ii czF ,0           (2’) 

and the boundary conditions at the surface of the solid phase change to 
 ,,...,1,0,)(,0 eo Nii ==⋅∇⋅−=⋅=⋅ Jntvtvn φμ     (5’) 
where t is the matrix containing vectors spanning the tangential plane of the solid 
surface. The boundary condition containing the electroosmotic mobility μeo is the von 
Smoluchowski equation. 

Model equations were discretized on the rectangular (in 2D) or cubic (in 3D) grid 
and processed by the finite element method and resulted in the set of linear and non-
linear equations. This set of equations was solved by the Newton method and the system 
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of linear equations solved during each iteration was solved by the LU decomposition of 
the banded matrix in 2D or by the multigrid algorithm in 3D [7]. 

4. Electroosmotic flow in porous media with negligible Debye length  
The distribution of the fluid velocity, pressure and electric potential in the spatially 2D 
porous structure with the assumption of the negligible thickness of the electric double 
layer was computed. The system was described by the set of equations (1’), (2’) and (4) 
with boundary conditions (5’) applied on the surface of the solid phase. Periodic 
boundary conditions were employed on the lower and upper boundary in Figure 2a. 
Boundary conditions on the left and right boundary are also considered to be periodic, 
 ,0,, lef,right,leftrightleftright =−Δ=−Δ=− tii ccppp φφφ     (7) 
for i=1,…,N. The obtained solution is visualized on Figure 2 for a spatially 2D domain 
with a coarse discretization. In the finite element method bilinear base functions are 
used for state variables {p, φ, ci}, but biquadratic base functions are employed for v. 
Multigrid algorithm performs well in 3D and computations with reconstructed porous 
media larger than 100 × 100 × 100 voxels are feasible on personal computers, cf. 
Figure 2b.  
 

 
(a) 

 

 
 
(b) 

 

Figure 2. Electroosmotic flow in spatially 2D and 3D porous domains (Δp = 0, Δφ > 0). 
Arrows represent the velocity distribution. (a) The size of the considered domain is 

10 × 10 μm. 

5. Ionic permselectivity in a narrow capillary and in a porous medium 
The concentration polarization can develop in the case of the Debye length comparable 
with the pore diameter. It is demonstrated in Figure 3 for the simple case of migration of 
ions through the spatially 2D microchannel with a nonuniform distribution of surface 
charge density σ, 
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The intensity of the externally applied electric field is E = |–∇φ| = 150 kV/m. 
Concentration of the uni-univalent electrolyte on the left and on the right boundary is 
cleft = cright = 0.001 mol/m3. The considered system is described by eqs (1)–(4) and 
applied boundary conditions are (5) and (6). Co-ions migrate from left to right due to 
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the externally applied potential difference, cf. Figure 3b. Because of the electric 
repulsion between the negatively charged ions and negatively charged walls of the 
channel the co-ions with concentration c– accumulate at x < 0.67 μm in front of the 
charged part. The concentration of counter-ions c+ increases in the middle part of the 
capillary due to the attractive interaction with the wall, cf. Figure 3a. The ratio of molar 
fluxes (selectivity) of counter-ions to co-ions is  J+/J– = 1.69. 

(a) (b) 
Figure 3. Distribution of ionic concentration in the spatially 2D microchannel: 

a) counter-ions c+; b) co-ions c– . 
 

The concentration distribution in the narrow micro-channel containing charged 
particles with the surface charge density σ = –2×10-5 C/m2 subjected to the externally 
applied electric field E = 150 kV/m is displayed in Figure 4. The surface charge 
distribution on the walls of the micro-channel is 
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The concentration of the uni-univalent electrolyte on the left and on the right boundary 
is cleft = cright = 0.001 mol/m3. Negatively charged co-ions migrate from the left to the 
right part of the micro-channel. The middle part of the micro-channel containing 
charged particles is depleted of co-ions and enriched by counter-ions because of 
electrostatic interactions with charged surfaces. The concentration polarization develops 
due to the accumulation of negatively charged co-ions at x < 0.47 μm. The ratio of 
molar fluxes (selectivity) of counter-ions to co-ions is  J+/J– = 2.47. 
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Figure 4. Distribution of ionic concentration in the spatially 2D microchannel filled 
with charged particles: a) counter-ions c+; b) co-ions c– . 

6. Conclusions 
The principal parameters of the porous media (e.g., membranes) that affect their 
performance in electric field driven applications are: (i) spatially 3D structure of the 
porous media, (ii) type and distribution of fixed charged groups in the porous structure, 
and (iii) type and concentration of the electrolyte. The� fixed� charge� groups� in� the�
membrane� cause� the� excess� of� counter-ions� and� the� exclusion� of� co-ions� in� the�
pores.� However,� the� absolute� concentration� of� the� fixed� charge� itself� is� not�
relevant� for� the� permselectivity� of� the�membrane.�Most current modeling studies 
describe the transport processes in porous media represented either as simplified 
geometrical structures (e.g., cylindrical capillaries), or as effective-scale (i.e., space-
averaged) pseudo-homogeneous media. We have developed the software allowing to 
predict the transport and separation properties of porous medium (e.g., perfusion flow 
and ionic permselectivity) from its micro-structure in applications involving 
electrodialysis, capillary electrochromatography and nanofiltration [8–11]. 

Porous materials in electric field applications are either polymeric, anorganic or 
mixed polymeric/anorganic in their chemical nature. These materials very often exhibit 
a broad pore size distribution and contain pores in the range of 1 nm to 100 μm. Multi-
scale modeling of electric field driven processes in porous media with a broad pore size 
distribution is the next objective of our work. Another objective of our ongoing work is 
the automatic refinement of the computational grid required to solve problems with the 
Debye length significantly smaller than the average pore size but still large enough to 
prevent the use of the von Smoluchowski boundary condition. 
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