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Abstract

Transport and separation processes in ionic systems located in the porous medium are
investigated. The software for the modeling of the combined electroosmotic, migration,
diffusion and pressure driven flow in the spatially 2D or 3D porous medium has been
developed. This software allows to determine the mapping from the parametric space of
the porous structure and distribution of fixed charge into the space of application
properties such as ionic permselectivity or perfusion flow. Software capabilities are
illustrated on case studies of systems where the Debye length is either comparable or
negligible with respect to the characteristic pore size. The concept of the reconstructed
porous medium has been employed to represent the morphology.
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1. Introduction

Porous media of various types are involved in practical applications involving ionic
electrolytes, e.g., capillary electrochromatography (CEC), nanofiltration, electrodialysis,
fuel cells and other membrane applications. One of the important practical problems is
to find the relation between the micro-structure of porous media, the distribution of
concentrations of ions and the electroosmotic flow through the porous media. Another
practical problem is the prediction of the permselectivity of membranes from their
known structure, from the distribution of fixed charge in the membrane and from the
concentration of the electrolyte. We have applied the methodology of the reconstructed
porous medium and employed the solution of the Navier-Stokes, Poisson and mass
balance equations to address the above mentioned problems.

The- previous- attempts- to- describe- and- model- the- electroosmotic- flow- in-
general- porous- media- followed- one- of- three- principal- methodologies- forced- by-
computational- feasibility- and /or- introduced-idealization- of- the- original- system:-
(i)-digitally- reconstructed- porous- media- with- negligible- Debye- length- [1],-
(ii)network-models-of-inter-connected-cylindrical-pores-[2],-and- (iii)-reduction-to-
effective-scale-(averaged)-1D-models-or-models-with-simple-geometry,-such-as-2D-
cylindrical'model-[3].-

2. Reconstructed porous medium

Spatial distribution of phases can be represented in the general case by the so called
phase function f; : R* = {0;1} for each phase i. The phase function of the pore phase is
defined as [4]

1 if re pore,

fg<r)={ (1)

0 otherwise.
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By definition only one phase can be present at any point # € R’. In a discrete form the
phase function fy(r) becomes the phase volume function which assigns each finite
volume element of space (voxel) a value from the set {0;1}. In a practical
implementation the domain on which the phase volume functions are specified is
typically a cubic grid of N, X N, X N, voxels, cf. Figure 1. Such a region of real space is
called the computational unit cell. The relationship between the unit cell and the porous
medium of interest depends on the absolute dimensions of the medium and on the
spatial resolution at which the medium is represented (feature dimensions). The unit cell
can either contain the entire medium plus some void space surrounding it, or be a
sample of a much larger (theoretically infinite) medium. In the latter case the
dimensions of the unit cell must be such that the unit cell is statistically representative
of the entire medium.

(b)
Figure 1. (a) Porous slot, section of Fig. 1b.; black color is pore and blue color is solid.
(b) Reconstructed granular medium. Periodic boundary conditions.

The reconstruction of the porous/multi-phase medium is the process starting from
the image obtained by the electron microscopy or by other imaging techniques,
followed by the evaluation of the suitable morphological descriptors of the image, and
concluding by the generation of the spatially 3D porous/multi-phase medium with the
same morphological characteristics as those of the original image. In mathematical
terms, given the porosity and the suitable morphological characteristics, we want to
reconstruct the replica of the porous medium represented by the phase function f(r)
defined on the discrete grid of voxels with coordinates r. The overview of several
algorithms of the stochastic or diagenetic reconstruction of the porous media is available
in [5]. The reconstructed porous medium is then used as the input for the calculation of
effective transport, mechanical and electric properties of the medium [6], or as the input
for the modeling of various reaction, transport and transformation processes.

3. Model equations

Stationary distributions of velocity and pressure for the incompressible liquid are
obtained by the solution of the continuity and Navier-Stokes equations

V-v=0,

_ 2 (1)

pv-Vv)==Vp+nVv—qVg,
where v is the velocity, p is the density, p is the pressure, 77 is the dynamic viscosity,
q is the charge density and ¢ is the electric potential. The term (— gV ¢) is the electric
force acting on the unit volume of the fluid. The charge density g is the linear
combination of concentrations of ions ¢; ,
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g=F) zici, ©)

where F is the Faraday constant and z; is the charge number of the i-th species. Local
electroneutrality assumption (¢ = 0) usually holds in the bulk electrolyte far from
charged surfaces.

In the system with the Debye length comparable with the characteristic pore size,
the distribution of the electric potential is obtained from Poisson equation

V29=—q /e &), 3
where & and & are the relative and absolute permittivity.

The steady state local balance of species i in the ionic system without chemical
reaction is considered in the form

V-J; =0, with J; =v¢; —D,;V¢; —F/(RT)z;D;c;V @, @)
where J; is the molar flux intensity of the i-th species defined by the Nernst-Planck
equation, D; is the diffusivity of the i-th species, R is the gas constant and 7 is the
temperature. The balance (4) is considered for all species, i = 1,..., N .

The system of equations (1)—(4) with appropriate boundary conditions for the set
of state variables {p, v, @, ¢, c;} is solved. The boundary conditions at the surface of the
solid phase are

nv=0, n-Vé=0/(g.£y), n-J;=0, i=1L.,N, (5)
where n is the local outer unit normal vector of the solid phase and o is the surface
charge density. The conditions on the boundary of the computational domain depend on
the considered case: (i) boundary conditions (5) are applied for the impermeable wall
with immobilized zero or non-zero surface charge density, (ii) Dirichlet boundary
conditions, or (iii) periodic boundary conditions. For example, Dirichlet boundary
conditions on the left and right boundary of the computational domain are

leftboundary:  p=prp, @=Fefi> € =Cilefi>» =L,

right boundary :  p = pright s @ =right » ¢ = Ciright » [ =L, N

When the Debye length is negligible when compared to the characteristic pore size,
e.g., in the case of highly concentrated electrolytes, the grid required to solve the model
equations (1)—(4) in the vicinity of the solid phase with a non-zero surface charge
density o would have to be very fine. In an alternative approach the very thin electric
double layer is excluded from the computational domain, so the electric term (— gV @) in
eq (1) is not considered and local electroneutrality assumption (¢ = 0) holds in the

electrolyte. The set of state variables reduces to {p, v, @, ¢;}, and the system is described
by the modified eqs (1°), (2°) and by eqs (4),

(6)

V V= 0 5 1’

p(v-Vv)z—Vp+77V2v, (1)

ozeiz,.c,., 2)
and the boundary conditions at the surface of the solid phase change to

nv=0, tv=—p,(t-Vg), n-J;=0, i=L.,N, (5”)

where ¢ is the matrix containing vectors spanning the tangential plane of the solid
surface. The boundary condition containing the electroosmotic mobility f, is the von
Smoluchowski equation.

Model equations were discretized on the rectangular (in 2D) or cubic (in 3D) grid
and processed by the finite element method and resulted in the set of linear and non-
linear equations. This set of equations was solved by the Newton method and the system
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of linear equations solved during each iteration was solved by the LU decomposition of
the banded matrix in 2D or by the multigrid algorithm in 3D [7].

4. Electroosmotic flow in porous media with negligible Debye length

The distribution of the fluid velocity, pressure and electric potential in the spatially 2D
porous structure with the assumption of the negligible thickness of the electric double
layer was computed. The system was described by the set of equations (1°), (2”) and (4)
with boundary conditions (5”) applied on the surface of the solid phase. Periodic
boundary conditions were employed on the lower and upper boundary in Figure 2a.
Boundary conditions on the left and right boundary are also considered to be periodic,

Pright —Pleft =AP,  right —Pett =A0,  Ciright —Cijler =0, (7
for i=1,...,N. The obtained solution is visualized on Figure 2 for a spatially 2D domain
with a coarse discretization. In the finite element method bilinear base functions are
used for state variables {p, @, ¢;}, but biquadratic base functions are employed for v.
Multigrid algorithm performs well in 3D and computations with reconstructed porous
media larger than 100 x 100 x 100 voxels are feasible on personal computers, cf.
Figure 2b.
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Figure 2. Electroosmotic flow in spatially 2D and 3D porous domains (Ap = 0, Ag> 0).
Arrows represent the velocity distribution. (a) The size of the considered domain is
10 x 10 pm.

5. Ionic permselectivity in a narrow capillary and in a porous medium

The concentration polarization can develop in the case of the Debye length comparable
with the pore diameter. It is demonstrated in Figure 3 for the simple case of migration of
ions through the spatially 2D microchannel with a nonuniform distribution of surface
charge density o,

-5x10°C/m* forxe <0.67,1.33> pum
o =
0C/m* for x ¢ (0.67,1.33)um

The intensity of the externally applied electric field is £ = -Vd = 150 kV/m.
Concentration of the uni-univalent electrolyte on the left and on the right boundary is
Cleft = Cright = 0.001 mol/m®. The considered system is described by eqs (1)—(4) and
applied boundary conditions are (5) and (6). Co-ions migrate from left to right due to
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the externally applied potential difference, cf. Figure 3b. Because of the electric
repulsion between the negatively charged ions and negatively charged walls of the
channel the co-ions with concentration c¢_ accumulate at x < 0.67 um in front of the
charged part. The concentration of counter-ions c. increases in the middle part of the
capillary due to the attractive interaction with the wall, cf. Figure 3a. The ratio of molar
fluxes (selectivity) of counter-ions to co-ions is J,/J_ = 1.69.
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Figure 3. Distribution of ionic concentration in the spatially 2D microchannel:
a) counter-ions c;; b) co-ions c_ .

The concentration distribution in the narrow micro-channel containing charged
particles with the surface charge density o= —2x107 C/m” subjected to the externally

applied electric field £ = 150 kV/m is displayed in Figure 4. The surface charge
distribution on the walls of the micro-channel is

~2x10°C/m*  for x € (0.47,1.67)um
0C/m*  forxg (0.47,1.67)um

The concentration of the uni-univalent electrolyte on the left and on the right boundary
1S Cleft = Crigne = 0.001 mol/m’. Negatively charged co-ions migrate from the left to the
right part of the micro-channel. The middle part of the micro-channel containing
charged particles is depleted of co-ions and enriched by counter-ions because of
electrostatic interactions with charged surfaces. The concentration polarization develops
due to the accumulation of negatively charged co-ions at x < 0.47 um. The ratio of
molar fluxes (selectivity) of counter-ions to co-ions is J./J =2.47.
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Figure 4. Distribution of ionic concentration in the spatially 2D microchannel filled
with charged particles: a) counter-ions c.; b) co-ions c_ .

6. Conclusions

The principal parameters of the porous media (e.g., membranes) that affect their
performance in electric field driven applications are: (i) spatially 3D structure of the
porous media, (ii) type and distribution of fixed charged groups in the porous structure,
and (iii) type and concentration of the electrolyte. The-fixed- charge- groups-in-the-
membrane- cause- the- excess- of- counter-ions- and- the- exclusion- of- co-ions- in- the-
pores.- However,- the- absolute- concentration- of- the- fixed- charge- itself- is- not-
relevant- for- the- permselectivity- of- the-membrane.-Most current modeling studies
describe the transport processes in porous media represented either as simplified
geometrical structures (e.g., cylindrical capillaries), or as effective-scale (i.e., space-
averaged) pseudo-homogeneous media. We have developed the software allowing to
predict the transport and separation properties of porous medium (e.g., perfusion flow
and ionic permselectivity) from its micro-structure in applications involving
electrodialysis, capillary electrochromatography and nanofiltration [8-11].

Porous materials in electric field applications are either polymeric, anorganic or
mixed polymeric/anorganic in their chemical nature. These materials very often exhibit
a broad pore size distribution and contain pores in the range of 1 nm to 100 um. Multi-
scale modeling of electric field driven processes in porous media with a broad pore size
distribution is the next objective of our work. Another objective of our ongoing work is
the automatic refinement of the computational grid required to solve problems with the
Debye length significantly smaller than the average pore size but still large enough to
prevent the use of the von Smoluchowski boundary condition.
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