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Abstract 
Problems of dynamic optimisation with inequality path constraints are common in 
industrial plants. These constraints describe conditions of the process when it operates 
with extreme values of the variables, based on safety and/or economics restraints. 
Normally, during the optimal trajectory some of the inequality constraints are activated, 
and those remain active during a certain period of time. This behaviour can produce a 
change in the differential index of the DAE system, leading to the so-called floating 
index phenomena (Feehery and Barton, 1998). This contribution is motivated by the 
high computational costs typically associated with each of the steps for the resolution of 
the floating index problem. The proposed new method unifies the advantages of special 
regularisation functions with numerical codes which integrate higher index DAE 
systems, avoiding the reinitialisation and index reduction steps. All the inequality 
constraints are described by appropriate continuous functions and the resulting DAE 
system can be numerically integrated directly using numerical code such as PSIDE 
(Lioen et al., 1998). This new procedure has been applied to two typical example: 
optimal control problem of index two with a state variable inequality constraint 
(Jacobson and Lele, 1969) and state constrained Van der Pol oscillator of index one. 
The main advantage of the new method is that the DAE system can be integrated 
continuously, preventing the restart of the numerical integration every time an 
inequality constraint is violated. The obtained results are identical with those obtained 
elsewhere encouraging new developments and extensions. 
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1. Main Text 
Chemical processes models are limited by constraints that represent safety conditions, 
chemical or physical equilibrium or economical constraints. These constraints are 
generally represented by inequality equations and can be applied to control or state 
variables. During the dynamic simulation, the exact time when an inequality restriction 
is activated is normally unknown. After the constraint is activated, a new equation (or 
information) must be included into the mathematical model, and this equation must be 
satisfied until the constraint is no longer active. A possible consequence of this fact is 
that the differential index of the differential-algebraic equation (DAE) system 
representing the mathematical model of the process can change during the dynamic 
simulation. This behaviour characterizes the so-called floating index DAE system. 
Methods of resolution of dynamic optimisation problems with inequality constraints (in 
the state variables) can be classified in two groups, according to the level of adopted 
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discretisation: total discretisation (or simultaneous approach) and partial discretisation 
(or sequential approach). In the first group, the dynamic system is totally discretised 
resulting in an algebraic system which, along with the equality and inequality 
constraints, is annexed to the code of non-linear programming (NLP). An advantage of 
this approach is the ease of manipulation of the inequality restrictions (Cuthrell and 
Biegler,1987 and Longsdon and Biegler,1989). However, its spectrum of application 
limited to a family of particularly simple and relatively small problems. For the second 
group, only the control variable is discretised. The resulting system of equations can be 
solved by techniques of dynamic programming or with non-linear programming (NLP) 
strategies. The main characteristic of this technique is that at each iteration of the NLP 
code a numerical integration of the dynamic system must be performed. Within the 
sequential approach, there are two different ways to handle the inequality constraints. 
 

(a) approximate methods. 
In this context, the inequalities constraints are evaluated in the neighbourhood of 
the feasible region by:  
 (i) introduction of square slack variable, converting inequality constraint to 
equality (Jacobson and Lele, 1969, Bryson and Ho, 1975);  
 (ii) measuring the degree of violation of the constraint over the entire trajectory 
by max operator or square max operator (Vassiliadis et al. 1994);  
 (iii) dislocating the limit of the constraint inside of an error defined previously 
- smooth approximation (Goh And Teo, 1988);  
 (iv) discretising the inequality constraints on a finite number of points and 
satisfying at the end of the segments (Chen and Vassiliadis, 2004). 
 
(b) direct methods. 
A second context consists of manipulating directly the inequalities and identifying 
the events (Park and Barton, 1994 and Guyou and Petzold, 2002) of activation and 
deactivation of the restriction. In this approach, the following steps are needed for 
the numerical resolution: (i) detection of activation/deactivation of constraints; (ii) 
index determination (and frequently index reduction); (iii) model switching; and 
(iv) determination of consistent initial conditions to restart integration (Feehery and 
Barton, 1998). 

 
In both methods, every time an inequality constraint is reached, a new DAE system 
must be built, a new set of consistent initial conditions must be determined and an index 
reduction method must be applied in order to restart the numerical integration (Majer et 
al., 1995, Park and Barton, 1996, Guiyou and Petzold, 2002). The result of the 
activation and deactivation of the restrictions can be the change in the differential index 
of the system during the optimisation process and integration. The numerical effort 
associated to each of those steps increases the computational cost. 
In this work, all the inequality constraints are described by appropriate continuous 
functions and the resulting DAE system can be integrated continuously. The new 
method allies the advantages of special regularisation functions with numerical codes 
that integrate higher index DAE systems, avoiding the reinitialisation and index 
reduction steps every time one inequality constraint is violated. This new procedure has 
been applied to typical example with inequality state constrained. The code PSIDE 
(Lioen et al., 1998) has been used for numerical integration. The obtained results are 
identical with obtained elsewhere encouraging new developments and extensions. 
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2. Numerical Example 
Two examples are presented to illustrate the proposed methodology: (i) an optimal 
control problem with a state variable inequality constraint (Jacobson and Lele, 1969); 
and (ii) state constrained Van der Pol oscillator (Vassiliadis et al. 1994). 
 
Example 1 - Optimal Control Problem with a State Variable Inequality Constraint 
(Index Two) 
 
This problem was originally presented by Jacobson and Lele (1969) and consists in 
minimize the state variable y3 at final time (tfinal=1) through manipulation of control 
variable u(t), restricted between lower and upper bounds of -3.0 and 15, respectively. 
The dynamic system equations are presented in Table 1. 

Table 1 – Set of Equations of Illustrative Example1. 
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The main idea of the proposed methodology is to smooth, during the numerical 
resolution, the transition between the constrained condition to the unconstrained 
condition. This procedure needs both: (a) the selection of the regularization function and 
(b) determination of the conditions that describe the feasible and infeasible region. 
The use of regularization functions in the automatic initialisation of algebraic-
differential systems has been proposed by Vieira and Biscaia Jr. (2000). The authors 
have established some criteria to guide the selection of those functions and their 
parameters. The chosen function for the present work is shown in Equation (5), where ξ 
is a parameter defined by the user (usually 0 < ξ << 1). 
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The determination of the set equations that describe the feasible and infeasible region is 
guided by an analysis of the behaviour of the inequality constraint before and after 
activation. In the illustrative example, the inequality is converted into a new algebraic 
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equation with a new algebraic variable y*, which is equal to the state variable y2 when 
the inequality constraint is inactive and by 8(t – 0.5)2 - 05 when the inequality constraint 
is active. In the present example, the sum of the conditions that characterize the feasible 
region and infeasible is represented by equation: 

( )[ ] ( )[ ][ ] ( )[ ]0.50.5 -t 8ξ,ty,gλ1yξ,ty,gλ y 2
2

* −⋅−+⋅=  (6) 

where g(y,t) is the inequality constraint and ( )[ ]ξ,ty,gλ  is the regularization function 
that presents the following property: 
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The state variable y2 is replaced by the new state variable y* in Equations (1) and (3). 
Then, the new dynamic model system is rebuilt with the Equations (1) to (3) and 
Equation (6). It should be pointed out that the computer code PSIDE (Lioen et al., 
1998) has been used to perform the numerical integration of the correspondent DAE 
system. This code can deal with fully implicit DAE systems of index up to 3, and its 
selection eliminates the need of index reduction. In this example, the index of the 
system is equal to 2 during the activation of the inequality constraint. The profiles 
obtained for the objective function and the unconstrained and constrained state variables 
are presented in Figures 1 and 2, respectively. 
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Figure 1 – Objective function profile for example 1. 
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Figure 2 - Unconstrained and constrained state variables profiles in example 1. 
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Example 2 - State Contrainted Van der Pol Oscillator (Index One) 
 
This problem was presented by Vassiliadis et al. (1994) and consists of minimizing the 
state variable y3 at final time (tfinal=5) through manipulation of control variable u(t), 
restricted between its lower and upper bounds of -0.3 and 1.0, respectively. 
 

Table2 – Set of Equations of Illustrative Example 2. 
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In this example, the feasible region is limited by Equation (11). When this constraint is 
active, the time derivative of the variable y1 (represented by the right hand side of 
Equation 8) must be null, what leads to an additional constraint for the control variable. 
Hence, two new algebraic equations are added to the original system in order to 
represent the restrictions on the state variable, 

( )[ ] ( )[ ][ ] ( )0.4-ξ,ty,gλ1yξ,ty,gλ y 1
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and on the control variable. 
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The results obtained for state variables are presented in the Figure 3. 

0 1 2 3 4 5

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

 

 

S
ta

te
 V

ar
ia

bl
es

Time

 y3

 y2

 y*

 
Figure 3 - State variables profiles in example 2. 
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3. Conclusions 
In this contribution, a novel strategy for resolution of floating index DAE has been 
presented. In the two examples presented, the index of the DAE systems changed when 
the constraints became active, characterizing the floating index behaviour. The smooth 
switch between models via a regularisation function has been effective and suitable. 
Numerical results previously presented for those systems have been reproduced and the 
simulation effort has been greatly reduced, since the steps of reinitialization and index 
reduction have been completely eliminated of the simulation.  
The regularization function used to change the value of the weight λ from 0 to 1 (or 
vice-versa) is continuous up to the first derivative. If a higher degree of continuity is 
required, alternative formulations have been tested by the authors. The reported 
function, Equation (5), has been considered the most suitable after a cost benefit 
analysis. 
Additional examples have been studied by the authors, and the results obtained have 
always been encouraging, Unfortunately, due to space limitations, it has not been 
possible to present additional numerical results, or even to extend the discussion 
concerning the examples presented. 
The methodology proposed in this work for handling the inequality constraints depends 
on the particular model being solved. However, this “taylor-made” characteristic does 
not compromise its utilization, due to the lack of extensive algebraic manipulation (such 
as differentiations) and to the simplicity of final formulation of the problem.  
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