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Abstract

This paper reports on research into novel optimisation schemes for large-scale
distributed computing environments that will enable data analysis and knowledge
acquisition in the course of optimisation. The scheme incorporates concepts from the
Simulated Annealing search strategy in order to ensure robustness. In contrast to
Simulated Annealing, which is a sequential optimisation algorithm, the proposed
optimisation scheme consists of a number of solution pools, each of which is associated
with a system temperature which defines solution quality within the pool. The solutions
in these pools are generated by performing constant temperature Markov processes on
existing solutions in these pools. As the individual Markov processes are independent
they can be completed in large-scale distributed computing environments, constantly
producing new solutions which are stored in a central database. During the optimisation,
the solutions are regularly reassigned to pools according to their performance relative to
the other solutions that have been generated such that the solution quality improves
towards the pool associated with the lowest temperature. This final pool accumulates
the set of optimal solutions during the optimisation. The solutions of all pools are
stored in a central database from which knowledge about the importance of individual
solution features can be extracted in the context of the systems performance.
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1. Introduction

Current optimisation methods are of limited use for decision-support in complex
systems due to two main short-comings. Firstly, they require long computational times
to identify optimal solutions to complex problems. The algorithms are not easily
parallelised for use in large-scale distributed computing environments as transitions
from initial towards optimal solutions are largely sequential. Distributed environments
become increasingly available with the advent of Grid Technologies and new
generations of optimisation methods are required that can exploit the vast available
distributed computing resources effectively. Secondly, the results obtained from
optimisation runs are often difficult to interpret by the user in the context of the
decisions to be taken. This is particularly true for stochastic optimisation methods,
which tend to be very robust in addressing complex optimisation problems, where
important solution features are often blurred by features not strongly impacting on the
systems performance. An optimisation algorithm that could exploit large-scale
distributed systems and provide the user with optimal solutions alongside insights into
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the importance of individual solution features would be very attractive for decision-
support.

We have devised a novel optimisation algorithm with the aim of addressing the above
shortcomings. The algorithm incorporates concepts from the stochastic optimisation
strategy Simulated Annealing to enable robust optimisation, whilst doing away with the
inherently sequential nature associated with this meta-heuristic-based search scheme.
This sequential nature of the search has hampered previous efforts of parallelising
Simulated Annealing algorithms. As a result, past developments allow only minor
distribution of computations and the number of processors that can be utilised in
optimisation is severely limited. The number of processors that can be deployed
depends upon the length of the homogenous Markov chain to be executed at a given
system temperature which is also an essential parameter to influence the performance of
optimisation (Leite and Topping, 1999). The limited ability of the algorithm to exploit
vast distributed computing resources presents a major deficit that prevents the
exploitation of advances in computing infrastructures in the form Grids (Antonopoulos
et al., 2005). The proposed new algorithm will enable the full exploitation of such
resources.

Besides allowing the large-scale distribution of the optimal search, the algorithm
enables the analysis of information generated during the optimal search as all
intermediate and optimal solutions are stored in a central database. It is therefore
possible to device information mining schemes that allow the acquisition of knowledge
about the individual solution features in the context of the solution performance and to
identify those solution features that strongly impact on the systems performance.

The following sections outline the new optimisation scheme. An application to a global
optimisation test problem is presented to illustrate the performance of the algorithm.
The development of information analysis schemes that allow efficient knowledge
acquisition for a number of process systems engineering problems is the focus of
current research and will be reported separately.

2. Distributed optimisation algorithm development

2.1. Architecture

The architecture of the novel optimisation algorithm is shown in Figure 1. The
algorithm features a number of pools, each of which is associated with a systems
temperature that controls the distribution of solution quality. The highest temperature
pool (T;) accepts almost all possible solutions to the problem, whereas the lowest
temperature pool (Ty) only admits solution of the highest quality. The algorithm is
initialised by assigning a number of feasible solutions to the problem to the highest
temperature pool (T;). Agents randomly select pools and solutions and perform Markov
processes at the corresponding pool temperature for each selected solution. All
solutions visited during the Markov process are returned into the corresponding pool.
As Markov processes are random operations, some solutions generated at a high
temperature will be of high quality and would warrant membership of a lower
temperature pool. This calls for a dynamic update of pool memberships based on the
solution quality distributions defined by the pool temperatures. This is realised through
periodic distribution of solutions amongst the pools. As the search progresses, more
and more solutions will penetrate the lower temperature (high performance) pools and
the algorithm is terminated as a sufficient number of solutions that warrant membership
of the lowest temperature pool has been generated.
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Figure 1 Novel optimisation algorithm

2.2. Pools and Agents

The concept of pools and agents allows the massive parallelisation of optimisation
experiments as the agents will be able to constantly generate solutions at different pool
temperatures which are stored in a central solution database that also stores information
about the pool associated with a solution. In contrast to existing stochastic optimisation
methods, there is no direct link to a solution from a previous iteration. This absence of
successive transitions, which has hampered previous attempts to parallelise Simulated
Annealing, enables massive parallelisation of the optimisation. The periodic
distribution of solutions among pools can be performed in parallel to the execution of
the Markov processes so that the idle times of the algorithm would be minimal.

2.3. Acceptance and termination criteria
The distribution of solutions among different pools requires acceptance criteria to

decide on the membership of a solution in a given pool. For a minimisation problem,
we accept a solution into a pool at temperature T if:

Exp( Cur(So) — Min(So)

T

where Cur(So) is the objective function value of a candidate solution So to be
distributed, Min(So) is the current best solution in the pool and Rand is a random
number (0 < Rand < 1). The acceptance criterion resembles the Metropolis criterion

JZRand ()



330 S. Yang et al.

employed in Simulated Annealing (Metropolis et al 1953) and has been implemented in
the first instance.

The average solution quality and the quality distribution improves from the highest
temperature to the lowest temperature pools. The lowest temperature pool therefore
contains only the best solutions with the lowest distribution of solution quality. The
more solutions are present in the lowest temperature pool, the higher will be the
probability that the optimal solution has been found. The search is terminated once a
specified number of solutions have entered the lowest temperature pool.

2.4. Prototype implementation

We have set up a small prototype system to test our algorithm. An SQL2000 database
was set up to store the pools on our research center’s central server. The agents, capable
of obtaining an initital solution from a pool, executing a Markov process at the pool
temperature, and returning a set of solutions into the pool, as well as the solution
redistribution algorithm were coded in fortran 95 with fortransql library. The agents
executed their Markov processes on a 731MHz Intel Pentium III processor. The PC and
the server communicated via our local area network.

3. Illustrative example

We have tested the algorithm on five well-studied nonconvex nonlinear test problems
given by Floudas et al. (1999). For lack of space, we can report on only one problem
here:

ml,n{(0.0039 X X7 + 0.0039 x x8) X (495 x x4 + 385 X x5 + 315 X x6) }
x10

subject to

-0.5%xx9xx4x(0.8xx7 +0.33333333 3333333 xx8) +x1=0
-0.5xx9xx5%(0.8 xx7 +0.33333333 3333333 xx8) +x2 =0
-0.5xx9%x6 % (0.8 xx7 +0.33333333 3333333 xx8) +x3=0
V10 -x7 - (+/x8 -4/x9) 2 0

x1-8.46527343 75xx10 20

X2 -9.65006510 416667 xx10 =0

x3 -8.87167968 75xx10 =0

0.5 x x1xx9 - 2.2 X (8.4652734 375 x x10) |:33333333 333333 5
0.5 X X2 X X9 - 2.2 X(9.6500651 0416667 x x10) 133333333 333333 5

0.5xx3% X9 - 2.2 X (8.8716796 875 x x10) 133333333 333333 5
x4 -0.01117717 47883801 xx7 > 0.2
X5 -0.01376553 60411427 xx7 >0.2
X6 - 0.01556638 72253648 xx7 0.2
x4 -0.01117717 47883801 xx8 >0.2
X5 -0.01376553 60411427 x x8 >0.2
X6 - 0.01556638 72253648 xx8 > 0.2
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Table 1. Effect of algorithmic parameters Poolnum and Markov on solution quality

Poolnum = 100 Markov = 100

Markov st Av_Obj Poolnum st Av_Obj
10 8.4E-05 -47.7063 10 2.01E-01 -46.4726
50 1.48E-04 -47.7061 50 1.52E-04 -47.7058
100 1.16E-04 -47.7061 100 1.16E-04 -47.706
500 2.81E-04 -47.7055 500 9.57E-05 -47.7061

Table 2. Comparison of the new optimisation algorithm with Simulated Annealing

Simulated Annealing Novel optimisation algorithm

CPU CPU

(sec) Av_Obj St Markov  Poolnum  (sec) Av_Obj St
1017.8 -47.7006  1.39E-03 500 100 102.0 -47.7045  5.86E-04

We studied the importance of the two key algorithmic parameters, the length of the
Markov chains (Markov) and the number of pools employed (poolnum). The searches
were terminated after at least ten solutions have penetrated the lowest temperature pool.
The average objectives (Av-Obj) and the standard deviations (st) over all solutions in
the lowest temperature pool are reported in Table 1. The performance of the algorithm
clearly improves with the number of pools present as a result of a better equilibration of
the system during cooling. However, the performance appears independent of the
length of the individual Markov processes and very good performances were observed
for the shortest chains studied. This behaviour has been observed for all problems
studied so far and suggests that massive parallelisation of the algorithm is indeed
possible.

We also solved the problem using conventional Simulated Annealing to establish a
basis for comparison. The Simulated Annealing implementation employed a
perturbation framework identical to the one used in our new algorithm. We developed
targeting curves with increasing Markov chain lengths for sets of ten runs per case. The
performance improved with the Markov chain length but the quality of the solutions did
not match those obtained using of the new algorithm, even for extremely long chains.
Table 2 compares the performance of new algorithm with that of Simulated Annealing
for the case of the longest Markov chains studied (1000). It can be seen that the new
algorithm outperforms Simulated Annealing in terms of solution quality and offers
massive savings (90%) in CPU time for the case of Markov = 500 and poolnum = 100.
Similar observations were made for different combinations of these two parameters.

The presented algorithm showed similar behaviour when applied to four other test
problem. Most importantly, the performance was observed to be independent of the
Markov parameter, which indicates the high potential for massive parallelisation.
Detailed results from these tests will be published separately.

4. Conclusions

We have presented a new optimisation method that is suitable for large-scale distributed
computing environments. The algorithm carries the strengths of stochastic optimisation
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methods such as Simulated Annealing in terms of global optimisation capabilities. A
comparison with Simulated Annealing indicates that the new algorithm is also highly
computationally efficient. In the absence of sequential searches, the algorithm is, in
principle, not limited by the number of processors it can exploit. The algorithm will be
applicable to a wide range of optimisation problems in operations as well as in design.
As the solutions of all pools are stored in a database, knowledge about the importance
of individual solution features can be extracted in the context of the systems
performance. This is the focus of current research. We are also in the process of setting
up a distributed test bed to evaluate the algorithm further. Applications to typical
process and product design problems as well as problems in process operations will be
the focus of future activities.
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