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Abstract 
This paper reports on research into novel optimisation schemes for large-scale 
distributed computing environments that will enable data analysis and knowledge 
acquisition in the course of optimisation. The scheme incorporates concepts from the 
Simulated Annealing search strategy in order to ensure robustness. In contrast to 
Simulated Annealing, which is a sequential optimisation algorithm, the proposed 
optimisation scheme consists of a number of solution pools, each of which is associated 
with a system temperature which defines solution quality within the pool. The solutions 
in these pools are generated by performing constant temperature Markov processes on 
existing solutions in these pools.  As the individual Markov processes are independent 
they can be completed in large-scale distributed computing environments, constantly 
producing new solutions which are stored in a central database. During the optimisation, 
the solutions are regularly reassigned to pools according to their performance relative to 
the other solutions that have been generated such that the solution quality improves 
towards the pool associated with the lowest temperature.  This final pool accumulates 
the set of optimal solutions during the optimisation.  The solutions of all pools are 
stored in a central database from which knowledge about the importance of individual 
solution features can be extracted in the context of the systems performance. 
 
Keywords: Optimisation, distributed computing, knowledge acquisition. 
 

1. Introduction 
Current optimisation methods are of limited use for decision-support in complex 
systems due to two main short-comings.  Firstly, they require long computational times 
to identify optimal solutions to complex problems. The algorithms are not easily 
parallelised for use in large-scale distributed computing environments as transitions 
from initial towards optimal solutions are largely sequential.  Distributed environments 
become increasingly available with the advent of Grid Technologies and new 
generations of optimisation methods are required that can exploit the vast available 
distributed computing resources effectively.  Secondly, the results obtained from 
optimisation runs are often difficult to interpret by the user in the context of the 
decisions to be taken.  This is particularly true for stochastic optimisation methods, 
which tend to be very robust in addressing complex optimisation problems, where 
important solution features are often blurred by features not strongly impacting on the 
systems performance. An optimisation algorithm that could exploit large-scale 
distributed systems and provide the user with optimal solutions alongside insights into 
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the importance of individual solution features would be very attractive for decision-
support. 
We have devised a novel optimisation algorithm with the aim of addressing the above 
shortcomings.  The algorithm incorporates concepts from the stochastic optimisation 
strategy Simulated Annealing to enable robust optimisation, whilst doing away with the 
inherently sequential nature associated with this meta-heuristic-based search scheme.  
This sequential nature of the search has hampered previous efforts of parallelising 
Simulated Annealing algorithms.  As a result, past developments allow only minor 
distribution of computations and the number of processors that can be utilised in 
optimisation is severely limited. The number of processors that can be deployed 
depends upon the length of the homogenous Markov chain to be executed at a given 
system temperature which is also an essential parameter to influence the performance of 
optimisation (Leite and Topping, 1999).  The limited ability of the algorithm to exploit 
vast distributed computing resources presents a major deficit that prevents the 
exploitation of advances in computing infrastructures in the form Grids (Antonopoulos 
et al., 2005). The proposed new algorithm will enable the full exploitation of such 
resources. 
Besides allowing the large-scale distribution of the optimal search, the algorithm 
enables the analysis of information generated during the optimal search as all 
intermediate and optimal solutions are stored in a central database.  It is therefore 
possible to device information mining schemes that allow the acquisition of knowledge 
about the individual solution features in the context of the solution performance and to 
identify those solution features that strongly impact on the systems performance.  
The following sections outline the new optimisation scheme. An application to a global 
optimisation test problem is presented to illustrate the performance of the algorithm.  
The development of information analysis schemes that allow efficient knowledge 
acquisition for a number of process systems engineering problems is the focus of 
current research and will be reported separately. 

2. Distributed optimisation algorithm development 

2.1. Architecture 
The architecture of the novel optimisation algorithm is shown in Figure 1. The 
algorithm features a number of pools, each of which is associated with a systems 
temperature that controls the distribution of solution quality.  The highest temperature 
pool (T1) accepts almost all possible solutions to the problem, whereas the lowest 
temperature pool (TN) only admits solution of the highest quality.  The algorithm is 
initialised by assigning a number of feasible solutions to the problem to the highest 
temperature pool (T1).  Agents randomly select pools and solutions and perform Markov 
processes at the corresponding pool temperature for each selected solution.  All 
solutions visited during the Markov process are returned into the corresponding pool.  
As Markov processes are random operations, some solutions generated at a high 
temperature will be of high quality and would warrant membership of a lower 
temperature pool.  This calls for a dynamic update of pool memberships based on the 
solution quality distributions defined by the pool temperatures.  This is realised through 
periodic distribution of solutions amongst the pools.  As the search progresses, more 
and more solutions will penetrate the lower temperature (high performance) pools and 
the algorithm is terminated as a sufficient number of solutions that warrant membership 
of the lowest temperature pool has been generated. 
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Figure 1 Novel optimisation algorithm 
 
2.2. Pools and Agents 
The concept of pools and agents allows the massive parallelisation of optimisation 
experiments as the agents will be able to constantly generate solutions at different pool 
temperatures which are stored in a central solution database that also stores information 
about the pool associated with a solution. In contrast to existing stochastic optimisation 
methods, there is no direct link to a solution from a previous iteration.  This absence of 
successive transitions, which has hampered previous attempts to parallelise Simulated 
Annealing, enables massive parallelisation of the optimisation.  The periodic 
distribution of solutions among pools can be performed in parallel to the execution of 
the Markov processes so that the idle times of the algorithm would be minimal.  
2.3. Acceptance and termination criteria 
The distribution of solutions among different pools requires acceptance criteria to 
decide on the membership of a solution in a given pool.  For a minimisation problem, 
we accept a solution into a pool at temperature T if: 
 
 (1) 
 
where Cur(So) is the objective function value of a candidate solution So to be 
distributed, Min(So) is the current best solution in the pool and Rand is a random 
number (0 < Rand < 1). The acceptance criterion resembles the Metropolis criterion 
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employed in Simulated Annealing (Metropolis et al 1953) and has been implemented in 
the first instance. 
The average solution quality and the quality distribution improves from the highest 
temperature to the lowest temperature pools.  The lowest temperature pool therefore 
contains only the best solutions with the lowest distribution of solution quality.  The 
more solutions are present in the lowest temperature pool, the higher will be the 
probability that the optimal solution has been found.  The search is terminated once a 
specified number of solutions have entered the lowest temperature pool.  
2.4. Prototype implementation 
We have set up a small prototype system to test our algorithm.  An SQL2000 database 
was set up to store the pools on our research center’s central server.  The agents, capable 
of obtaining an initital solution from a pool, executing a Markov process at the pool 
temperature, and returning a set of solutions into the pool, as well as the solution 
redistribution algorithm were coded in fortran 95 with fortransql library.  The agents 
executed their Markov processes on a 731MHz Intel Pentium III processor.  The PC and 
the server communicated via our local area network. 

3. Illustrative example 
We have tested the algorithm on five well-studied nonconvex nonlinear test problems 
given by Floudas et al. (1999). For lack of space, we can report on only one problem 
here: 
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Table 1. Effect of algorithmic parameters Poolnum and Markov on solution quality 

Poolnum = 100 Markov = 100 

Markov st Av_Obj Poolnum st Av_Obj 

10 8.4E-05 -47.7063 10 2.01E-01 -46.4726 

50 1.48E-04 -47.7061 50 1.52E-04 -47.7058 

100 1.16E-04 -47.7061 100 1.16E-04 -47.706 

500 2.81E-04 -47.7055 500 9.57E-05 -47.7061 

 
Table 2. Comparison of the new optimisation algorithm with Simulated Annealing 

Simulated Annealing Novel optimisation algorithm 

CPU 
(sec) Av_Obj St Markov Poolnum 

CPU 
(sec) Av_Obj St 

1017.8 -47.7006 1.39E-03 500 100 102.0 -47.7045 5.86E-04 

 
We studied the importance of the two key algorithmic parameters, the length of the 
Markov chains (Markov) and the number of pools employed (poolnum).   The searches 
were terminated after at least ten solutions have penetrated the lowest temperature pool.  
The average objectives (Av-Obj) and the standard deviations (st) over all solutions in 
the lowest temperature pool are reported in Table 1. The performance of the algorithm 
clearly improves with the number of pools present as a result of a better equilibration of 
the system during cooling.  However, the performance appears independent of the 
length of the individual Markov processes and very good performances were observed 
for the shortest chains studied. This behaviour has been observed for all problems 
studied so far and suggests that massive parallelisation of the algorithm is indeed 
possible. 
We also solved the problem using conventional Simulated Annealing to establish a 
basis for comparison.  The Simulated Annealing implementation employed a 
perturbation framework identical to the one used in our new algorithm.  We developed 
targeting curves with increasing Markov chain lengths for sets of ten runs per case.  The 
performance improved with the Markov chain length but the quality of the solutions did 
not match those obtained using of the new algorithm, even for extremely long chains. 
Table 2 compares the performance of new algorithm with that of Simulated Annealing 
for the case of the longest Markov chains studied (1000).  It can be seen that the new 
algorithm outperforms Simulated Annealing in terms of solution quality and offers 
massive savings (90%) in CPU time for the case of Markov = 500 and poolnum = 100.  
Similar observations were made for different combinations of these two parameters. 
The presented algorithm showed similar behaviour when applied to four other test 
problem.  Most importantly, the performance was observed to be independent of the 
Markov parameter, which indicates the high potential for massive parallelisation.  
Detailed results from these tests will be published separately. 

4. Conclusions 
We have presented a new optimisation method that is suitable for large-scale distributed 
computing environments.  The algorithm carries the strengths of stochastic optimisation 
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methods such as Simulated Annealing in terms of global optimisation capabilities.  A 
comparison with Simulated Annealing indicates that the new algorithm is also highly 
computationally efficient.  In the absence of sequential searches, the algorithm is, in 
principle, not limited by the number of processors it can exploit.  The algorithm will be 
applicable to a wide range of optimisation problems in operations as well as in design.  
As the solutions of all pools are stored in a database, knowledge about the importance 
of individual solution features can be extracted in the context of the systems 
performance.  This is the focus of current research. We are also in the process of setting 
up a distributed test bed to evaluate the algorithm further.  Applications to typical 
process and product design problems as well as problems in process operations will be 
the focus of future activities. 
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