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Abstract

A new computational package (AUTO DAE) to study the stability of index-1 differential-
algebraic equations (DAEs) is presented. The characterization of the characteristic values of these
systems is also presented and a discussion on the stability theorems for ordinary differential
equations is performed for the differential-algebraic case. AUTO_DAE is based on the open
source continuation and bifurcation computational package AUTO (Doedel et al., 1997),
thoroughly used to investigate the behavior of ODEs. Prior to steady-state non linear analysis,
AUTO_DAE performs a structural characterization of the DAEs in order to recognize the
algebraic equations presented in the model. The characteristic values of the DAE system are
evaluated using a standard routine to solve the generalized characteristic value problem.
Reliability and robustness of the new code are demonstrated through the analysis of non linear
chemical engineering problems.
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1. Introduction

When a process is investigated, model based steady-state and dynamic analysis is
usually performed before control and optimization techniques are implemented. Many
process models may present non linear responses such as multiplicity of stationary
solutions and self-sustained periodic oscillations. In order to study those modes of
responses appropriately, one may use the well-known concepts underlying the
bifurcation theory as well as methods of parametric continuation.

The theory of nonlinear dynamical systems described by ordinary differential equations
(ODEs) is very well developed and there are an uncountable number of academic and
scientific books, articles and computational packages about this subject. Nevertheless,
the theory for systems governed by differential algebraic equations (DAEs) is not so
well developed and is modestly discussed in the open literature, and the main results
available are usually obtained for simple cases, such as those described by index-1 DAE
systems. Besides, open and public domain computational codes for nonlinear analysis of
DAEs are almost nonexistent in the literature (see, for instance, Hyanek et al., 1995;
Kienle, et al., 1995; Ochs et al., 1996; Mangold ef al., 2000).

In this work, a new, open source computational package to study the stability behavior
of process models described by index-1 differential-algebraic equations is presented.
The new code, AUTO_DAE, is based on the well-known bifurcation and continuation
package AUTO (Doedel et al., 1997). Prior to steady-state nonlinear analysis,
AUTO_DAE performs a structural characterization of the DAEs in order to recognize
the algebraic equations presented in the model. The characteristic values of the DAE
system are evaluated using a standard routine to solve the generalized characteristic
value problem. Reliability and robustness of the new code are demonstrated through the
analysis of nonlinear chemical engineering problems.
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2. Review of Theory

2.1. Stability of DAEs

The problem of stability and bifurcation analysis of DAE systems has also received
attention in other communities than the chemical engineering community (e.g. Reich,
1995; Beardmore and Song, 1998; Chen and Aihara, 2001). A tutorial discussion
regarding this subject is presented by Beardmore and Song (1998). When approaching
the problem, a few fundamental questions may be posed: Can the methods of nonlinear
analysis developed for ODEs be directly applied to DAEs? Is it possible to define the
Lyapunov stability for DAEs? If the DAE system has a given parameter, A, can one find
the bifurcation structure of the solutions as A is varied? Unfortunately, preliminary
answers to these questions are generally negative.

Nevertheless, if certain regularization conditions, given by Reich (1995), are satisfied,
it can be shown that the stability of equilibrium points of DAE system can be analyzed
using classical linear algebra and spectral theory concepts. Furthermore, in the
neighborhood of the equilibrium point, the DAE system possesses a linearization that is
a vector field whose flow is equivalent to that of the DAE system, and whose dimension
is equal to that of the local manifold (Beardmore and Song, 1998). These results are
particularly important when one is interested in applying classical ODEs theory in the
study of DAEs and shows, additionally, that a linearization is possible.

The determination of the stability for a DAE system is performed slightly different from
the purely differential case. Consider the semi-explicit DAE system below

dx
a - f(X(t),y(t),?&) ,

0=g(x(1),y(t),A)

where feR", ge R™ are nonlinear functions, and xe R", ye R" are differential and
algebraic state variables, respectively. The notation may be simplified even more as
follows

BX—F(R(0.), @

(M

where Be R"™xR""™ has rank(B)<n+m, F =[f g]T eR™™ and X =[x y]T e R™™,

Let X be an equilibrium point of Equation (2). Then, performing a linearization of the
system around of the equilibrium point and neglecting high order terms, one may write
gdGx- )
dt
The matrix Ae R™™xR"™ is the well-known Jacobian matrix of the system. Thus, the
determination of the stability of equilibrium points of Equation (3) gives rise to a
generalized characteristic value problem, as follows
Av =Buv, 4
where | is a characteristic value associated to the characteristic vector v. The concept of
a matrix pencil may be useful at this point.

= AR -X). ?3)

Definition (Matrix pencil). Let A and B be a pair of matrices nxn. The set of all
matrices of the form A-uB, with pe C, is called matrix pencil (C is the set of complex

numbers). The characteristic values of the matrix pencil are elements of the set [W(A,B)
defined by
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w(A,B) ={ue C/det(A —puB) = 0}.
If e W(A,B) and Av =uBv , with v0, then v is called characteristic vector of A-uB.

As discussed by Beardmore and Song (1998), considering that the DAE system satisfies
the regularization conditions given by Reich (1995), which guarantees the existence of
the linearization, then it may be said that if all pairs (1,v)e C x C"™ satisfying
(A-uB)v=0, %)

are such that Re()<0, then 3 is linearly stable. For vector fields linear stability
implies in local asymptotic stability (Seydel, 1994), which is also valid for regular DAE
systems.

The calculation of saddle-node bifurcation points, also known as limit points, may be
carried out using the limit points theorems for ODEs, as they are also equilibrium points
of Equation (2). It should be pointed out, though, that the stability of the equilibrium
point should be determined as indicated by Equation (4).

As far as Hopf bifurcation points are concerned, Reich (1995) presents a version of the
Hopf theorem applied to DAE systems, where the regularization conditions assure the
linearization of the system. Reich uses the regularization conditions to justify the Hopf
theorems for index-1 DAE systems (Beardmore and Song, 1998).

2.2. Parametric Continuation of Index-1 DAEs

AUTO (Doedel et al., 1997) is a continuation package able perform bifurcation analysis
of algebraic systems of the form

f(x,A)=0, (6)
where fe R" is a vector of nonlinear functions, xe R" is a vector of state variables and
A€ R is a real parameter of the system. Systems of ODEs of the form

dx
5 =), 7

may also be investigated in AUTO.

In order to carry out the continuation of stationary curves, AUTO uses a pseudo-arc
length with multiple step predictor-corrector technique (Kubicek and Marek, 1996), as
long as the user supplies the code with an initial steady-state, and chooses one or more
continuation parameters of the mathematical model. It is possible, then, to detect the
occurrence of special points, such as limit points (LP) and Hopf bifurcation (HB) points.
Besides, continuation of periodic orbits is also possible, as well as the continuation of
LPs and HBs in two or three parameters. A strong limitation of AUTO is that, in
principle, DAE systems may not be treated directly. Furthermore, AUTO is designed to
work with low dimensional problems. Is should be pointed out, though, that literature
shows that AUTO may be easily enhanced to work with systems up to a few hundred
equations (Hyanek et al., 1995; Melo et al., 2003). Besides, linear algebra methods of
sparse matrices are available in the literature, as discussed by Mangold et al., 2000.

3. Stability Analysis in AUTO_DAE

In order to perform the continuation of stationary points of DAEs in AUTO, the
calculation of characteristic values must be performed as indicated by Equation (4).
Notice that, at steady-state, Equation (2) reduces to Equation (6), indicating that the
continuation algorithm does not require any change. For the solution of the generalized
characteristic value problem, the routine rgg. £ of Eispack (Netlib, 2004) was chosen.
This routine uses the QZ algorithm of Moler and Stewart (1973). This algorithm does
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not make any inversion of matrix B or of any submatrix of B, and is a generalization of
the QR algorithm (Golub and van Loan, 1996).

It is important to notice that a fundamental step toward the determination of the stability
of equilibrium points of a DAE system is the calculation of matrix B. In order to do that,
a structural characterization routine has been added to AUTO. The vector of functions F
(cf. Equation (2)) is implemented in AUTO with the aid of another vector, XPRIME, as
follows

F; = RHS; — XPRIME; for i=1,....,n
F, =RHS; for i=n+1,..,n+m
where RHS stands for the right hand side of the equation. Notice that, as presented in
Equation (8), the system possesses n differential equations and m algebraic equations.
The structural characterization routine tests the existence of derivatives of the state
variables in the equations and characterizes the structure of the DAE system. As a
result, matrix B is generated.

The major modifications of AUTO described above have resulted in a new code for the
analysis of steady-state stability of index-1 DAE system called AUTO_DAE. In order to
show the reliability and robustness of the new code, two chemical engineering systems
that may be described by DAEs are treated below.

) ®)

4. Examples

4.1. The CSTR with A—B Reaction

The first example is the well-know CSTR with an exothermic first order reaction, A —
B, described by Uppal, Ray and Poore (1974). This is a benchmark example for many
nonlinear studies as it presents a multitude of nonlinear responses, including
multiplicity of steady-state solutions and limit cycle behavior. Mass and energy
balances performed on the reactor lead to the following dimensionless mathematical
model

%: —X1 +Da(1—X1)eXp(X2) ’ (9)
dztz =-xp +BDa(l-x)exp(x2) —Bx7, (19

where X, is the conversion of species A, X; is the dimensionless reactor temperature, Da
is the Damkohler number, B is the adiabatic temperature rise, and [ is the dimensionless
heat transfer coefficient.

As presented, the model is described by ODEs and, thus, may be directly implemented
in AUTO. In order to test the new version of the code, AUTO_DAE, the model was
rewritten in such a way to force the appearance of a differential-algebraic structure. In
the index-1 formulation of the model one may write

dﬁ:—x1+Da(l—x1)X3, (11)
dt

d;‘—tz=—x2 +BDa(l-x{)x3 —Bx5, (12)
0=x3—exp(xp). (13)

Figure 1 presents a typical bifurcation diagram for this system as the Damkdhler
number is varied. Other parameters were kept constant during the calculation (B=14 and
B=2). Saddle-node (limit point) as well as Hopf bifurcations are observed. Stable
branches are given by solid lines and unstable branches by dotted lines; Hopf
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bifurcation points are represented by the symbol (m). Three bifurcation diagrams were
built: two for the implementation of Equations (9)-(10) in AUTO and in AUTO_DAE,
and another for the implementation of Equations (11)-(13) in AUTO_DAE. In all three
cases, the bifurcation diagrams are rigorously identical to that presented in Figure 1.
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Figure 1 — Bifurcation diagram for Example 1.

4.2. The Evaporative Cooling Reactor

The second example presented regards the evaporative cooling CSTR, also known as
boiling liquid reactor. In this class of reactors, the reaction heat for exothermic
reactions is removed by partial vaporization of the liquid phase (Figure 2a). A first
order, exothermic reaction A — B is processed in the vessel. By assuming the quasi-
steady state hypothesis for the dynamics of the cooling jacket, the reactor mathematical
model is given below as presented by Zavala (1997)

Xm

—=1-0y, 14
m I (14)
dxy X9

—£=1-0; =% -kx5, (15)
dt X1

dX3 1

— = {ICpg(xI—X3)—Ahrkx1+Og[Cpl(xcond—X3)—Ahvap], (16)
dt x1Cpy

0; =Byx7 , (17)
Og =0/Pp = Peong > (18)

where x; and x, represent the total number of mols and the number of mols of species A
in the liquid phase, respectively, x; is the reactor temperature, O, is the exit molar
flowrate, and O, is the gas phase molar flowrate (Figura 2a).

For this system, there was no need to create auxiliary algebraic variables, as Equations
(17)-(18) guarantee the index-1 differential-algebraic structure for the system. It should
be noticed, however, that if Equations (17)-(18) were inserted into Equations (14)-(16),
then the system would become purely differential.

All parameters of the evaporative cooling reactor used for the calculations presented
here may be found in Zavala (1997), and are omitted here due to space reasoning. In
order to test the new code, three bifurcation diagrams were built: two for the
implementation of Equations (14)-(16) in AUTO and in AUTO_DAE, and another for
the implementation of Equations (14)-(18) in AUTO_DAE. In all three cases, the
bifurcation diagrams are rigorously identical to that presented in Figure 2b. A
discontinuity in the state equation used for the calculation of vapor pressure of species
A is responsible for the unusual behavior observed in Figure 2b.
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Figure 2 — Sketch (a) and bifurcation diagram (b) of the evaporative cooling reactor.

4. Conclusions

A new code, AUTO DAE, is presented to perform stability analysis of process models
described by differential-algebraic equations. Tests with chemical engineering problems
have demonstrated the reliability and robustness of the new code.
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