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Abstract 
A new computational package (AUTO_DAE) to study the stability of index-1 differential-
algebraic equations (DAEs) is presented. The characterization of the characteristic values of these 
systems is also presented and a discussion on the stability theorems for ordinary differential 
equations is performed for the differential-algebraic case. AUTO_DAE is based on the open 
source continuation and bifurcation computational package AUTO (Doedel et al., 1997), 
thoroughly used to investigate the behavior of ODEs. Prior to steady-state non linear analysis, 
AUTO_DAE performs a structural characterization of the DAEs in order to recognize the 
algebraic equations presented in the model. The characteristic values of the DAE system are 
evaluated using a standard routine to solve the generalized characteristic value problem. 
Reliability and robustness of the new code are demonstrated through the analysis of non linear 
chemical engineering problems. 
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1. Introduction 
When a process is investigated, model based steady-state and dynamic analysis is 
usually performed before control and optimization techniques are implemented. Many 
process models may present non linear responses such as multiplicity of stationary 
solutions and self-sustained periodic oscillations. In order to study those modes of 
responses appropriately, one may use the well-known concepts underlying the 
bifurcation theory as well as methods of parametric continuation.  
The theory of nonlinear dynamical systems described by ordinary differential equations 
(ODEs) is very well developed and there are an uncountable number of academic and 
scientific books, articles and computational packages about this subject. Nevertheless, 
the theory for systems governed by differential algebraic equations (DAEs) is not so 
well developed and is modestly discussed in the open literature, and the main results 
available are usually obtained for simple cases, such as those described by index-1 DAE 
systems. Besides, open and public domain computational codes for nonlinear analysis of 
DAEs are almost nonexistent in the literature (see, for instance, Hyanek et al., 1995; 
Kienle, et al., 1995; Ochs et al., 1996; Mangold et al., 2000).  
In this work, a new, open source computational package to study the stability behavior 
of process models described by index-1 differential-algebraic equations is presented. 
The new code, AUTO_DAE, is based on the well-known bifurcation and continuation 
package AUTO (Doedel et al., 1997). Prior to steady-state nonlinear analysis, 
AUTO_DAE performs a structural characterization of the DAEs in order to recognize 
the algebraic equations presented in the model. The characteristic values of the DAE 
system are evaluated using a standard routine to solve the generalized characteristic 
value problem. Reliability and robustness of the new code are demonstrated through the 
analysis of nonlinear chemical engineering problems. 
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2. Review of Theory 

2.1. Stability of DAEs 
The problem of stability and bifurcation analysis of DAE systems has also received 
attention in other communities than the chemical engineering community (e.g. Reich, 
1995; Beardmore and Song, 1998; Chen and Aihara, 2001). A tutorial discussion 
regarding this subject is presented by Beardmore and Song (1998). When approaching 
the problem, a few fundamental questions may be posed: Can the methods of nonlinear 
analysis developed for ODEs be directly applied to DAEs? Is it possible to define the 
Lyapunov stability for DAEs? If the DAE system has a given parameter, λ, can one find 
the bifurcation structure of the solutions as λ is varied? Unfortunately, preliminary 
answers to these questions are generally negative. 
Nevertheless, if certain regularization conditions, given by Reich (1995), are satisfied, 
it can be shown that the stability of equilibrium points of DAE system can be analyzed 
using classical linear algebra and spectral theory concepts. Furthermore, in the 
neighborhood of the equilibrium point, the DAE system possesses a linearization that is 
a vector field whose flow is equivalent to that of the DAE system, and whose dimension 
is equal to that of the local manifold (Beardmore and Song, 1998). These results are 
particularly important when one is interested in applying classical ODEs theory in the 
study of DAEs and shows, additionally, that a linearization is possible. 
The determination of the stability for a DAE system is performed slightly different from 
the purely differential case. Consider the semi-explicit DAE system below 
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where f∈ℜn, g∈ℜm are nonlinear functions, and x∈ℜn, y∈ℜm are differential and 
algebraic state variables, respectively. The notation may be simplified even more as 
follows 
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where B∈ℜn+m×ℜn+m has rank(B)<n+m, T][ g   fF = ∈ℜn+m, and T][~ yx   x = ∈ℜn+m. 

Let *x~  be an equilibrium point of Equation (2). Then, performing a linearization of the 
system around of the equilibrium point and neglecting high order terms, one may write 

)~)t(~
dt

)~~(d *
*

xxA(x-xB −= .       (3) 

The matrix A∈ℜn+m×ℜn+m is the well-known Jacobian matrix of the system. Thus, the 
determination of the stability of equilibrium points of Equation (3) gives rise to a 
generalized characteristic value problem, as follows 

vBAv μ= ,        (4) 
where μ is a characteristic value associated to the characteristic vector v. The concept of 
a matrix pencil may be useful at this point.  
 
Definition (Matrix pencil). Let A and B be a pair of matrices n×n. The set of all 
matrices of the form A-μB, with μ∈C, is called matrix pencil (C is the set of complex 
numbers). The characteristic values of the matrix pencil are elements of the set μ(A,B) 
defined by  
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{ }0)det(/C),( =μ−∈μ=μ BABA . 
If μ∈μ(A,B) and BvAv μ= , with v≠0, then v is called characteristic vector of A-μB. 
As discussed by Beardmore and Song (1998), considering that the DAE system satisfies 
the regularization conditions given by Reich (1995), which guarantees the existence of 
the linearization, then it may be said that if all pairs (μ,v)∈C × Cn+m satisfying  

0vB-A =μ )( ,               (5) 

are such that Re(μ)<0, then *x~  is linearly stable. For vector fields linear stability 
implies in local asymptotic stability (Seydel, 1994), which is also valid for regular DAE 
systems. 
The calculation of saddle-node bifurcation points, also known as limit points, may be 
carried out using the limit points theorems for ODEs, as they are also equilibrium points 
of Equation (2). It should be pointed out, though, that the stability of the equilibrium 
point should be determined as indicated by Equation (4). 
As far as Hopf bifurcation points are concerned, Reich (1995) presents a version of the 
Hopf theorem applied to DAE systems, where the regularization conditions assure the 
linearization of the system. Reich uses the regularization conditions to justify the Hopf 
theorems for index-1 DAE systems (Beardmore and Song, 1998). 
2.2. Parametric Continuation  of Index-1 DAEs 
AUTO (Doedel et al., 1997) is a continuation package able perform bifurcation analysis 
of algebraic systems of the form 

0xf =λ),( ,                (6) 
where f∈ℜn is a vector of nonlinear functions, x∈ℜn is a vector of state variables and 
λ∈ℜ is a real parameter of the system. Systems of ODEs of the form 

)),t((
dt
d λ= xfx ,                (7) 

may also be investigated in AUTO.  
In order to carry out the continuation of stationary curves, AUTO uses a pseudo-arc 
length with multiple step predictor-corrector technique (Kubiček and Marek, 1996), as 
long as the user supplies the code with an initial steady-state, and chooses one or more 
continuation parameters of the mathematical model. It is possible, then, to detect the 
occurrence of special points, such as limit points (LP) and Hopf bifurcation (HB) points. 
Besides, continuation of periodic orbits is also possible, as well as the continuation of 
LPs and HBs in two or three parameters. A strong limitation of AUTO is that, in 
principle, DAE systems may not be treated directly. Furthermore, AUTO is designed to 
work with low dimensional problems. Is should be pointed out, though, that literature 
shows that AUTO may be easily enhanced to work with systems up to a few hundred 
equations (Hyanek et al., 1995; Melo et al., 2003). Besides, linear algebra methods of 
sparse matrices are available in the literature, as discussed by Mangold et al., 2000.   

3. Stability Analysis in AUTO_DAE 
In order to perform the continuation of stationary points of DAEs in AUTO, the 
calculation of characteristic values must be performed as indicated by Equation (4). 
Notice that, at steady-state, Equation (2) reduces to Equation (6), indicating that the 
continuation algorithm does not require any change. For the solution of the generalized 
characteristic value problem, the routine rgg.f of Eispack (Netlib, 2004) was chosen. 
This routine uses the QZ algorithm of Moler and Stewart (1973). This algorithm does 
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not make any inversion of matrix B or of any submatrix of B, and is a generalization of 
the QR algorithm (Golub and van Loan, 1996). 
It is important to notice that a fundamental step toward the determination of the stability 
of equilibrium points of a DAE system is the calculation of matrix B. In order to do that, 
a structural characterization routine has been added to AUTO. The vector of functions F 
(cf. Equation (2)) is implemented in AUTO with the aid of another vector, XPRIME, as 
follows 

mn,...,1nifor    RHSF
n,...,1ifor    XPRIMERHSF

ii

iii
++==
=−=

,     (8) 

where RHS stands for the right hand side of the equation. Notice that, as presented in 
Equation (8), the system possesses n differential equations and m algebraic equations. 
The structural characterization routine tests the existence of derivatives of the state 
variables in the equations and characterizes the structure of the DAE system. As a 
result, matrix B is generated. 
The major modifications of AUTO described above have resulted in a new code for the 
analysis of steady-state stability of index-1 DAE system called AUTO_DAE. In order to 
show the reliability and robustness of the new code, two chemical engineering systems 
that may be described by DAEs are treated below. 

4. Examples 

4.1. The CSTR with A→B Reaction 
The first example is the well-know CSTR with an exothermic first order reaction, A → 
B, described by Uppal, Ray and Poore (1974). This is a benchmark example for many 
nonlinear studies as it presents a multitude of nonlinear responses, including 
multiplicity of steady-state solutions and limit cycle behavior. Mass and energy 
balances performed on the reactor lead to the following dimensionless mathematical 
model 

)xexp()x1(Dax
dt

dx
211

1 −+−= ,      (9) 
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β−−+−= ,       (10) 

where x1 is the conversion of species A, x2 is the dimensionless reactor temperature, Da 
is the Damköhler number, B is the adiabatic temperature rise, and β is the dimensionless 
heat transfer coefficient. 
As presented, the model is described by ODEs and, thus, may be directly implemented 
in AUTO. In order to test the new version of the code, AUTO_DAE, the model was 
rewritten in such a way to force the appearance of a differential-algebraic structure. In 
the index-1 formulation of the model one may write 

311
1 x)x1(Dax

dt
dx −+−= ,      (11) 

2312
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dx

β−−+−= ,     (12) 

)xexp(x0 23 −= .              (13) 
Figure 1 presents a typical bifurcation diagram for this system as the Damköhler 
number is varied. Other parameters were kept constant during the calculation (B=14 and 
β=2). Saddle-node (limit point) as well as Hopf bifurcations are observed. Stable 
branches are given by solid lines and unstable branches by dotted lines; Hopf 
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bifurcation points are represented by the symbol (■). Three bifurcation diagrams were 
built: two for the implementation of Equations (9)-(10) in AUTO and in AUTO_DAE, 
and another for the implementation of Equations (11)-(13) in AUTO_DAE. In all three 
cases, the bifurcation diagrams are rigorously identical to that presented in Figure 1. 
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Figure 1 – Bifurcation diagram for Example 1. 

4.2. The Evaporative Cooling Reactor 
The second example presented regards the evaporative cooling CSTR, also known as 
boiling liquid reactor. In this class of reactors, the reaction heat for exothermic 
reactions is removed by partial vaporization of the liquid phase (Figure 2a). A first 
order, exothermic reaction A → B is processed in the vessel. By assuming the quasi-
steady state hypothesis for the dynamics of the cooling jacket, the reactor mathematical 
model is given below as presented by Zavala (1997) 

lOI
dt

dx1 −= ,        (14) 
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1xO β=l ,        (17) 

cond0 PPO −α=g ,       (18) 
where x1 and x2 represent the total number of mols and the number of mols of species A 
in the liquid phase, respectively, x3 is the reactor temperature, Ol is the exit molar 
flowrate, and Og is the gas phase molar flowrate (Figura 2a). 
For this system, there was no need to create auxiliary algebraic variables, as Equations 
(17)-(18) guarantee the index-1 differential-algebraic structure for the system. It should 
be noticed, however, that if Equations (17)-(18) were inserted into Equations (14)-(16), 
then the system would become purely differential. 
All parameters of the evaporative cooling reactor used for the calculations presented 
here may be found in Zavala (1997), and are omitted here due to space reasoning. In 
order to test the new code, three bifurcation diagrams were built: two for the 
implementation of Equations (14)-(16) in AUTO and in AUTO_DAE, and another for 
the implementation of Equations (14)-(18) in AUTO_DAE. In all three cases, the 
bifurcation diagrams are rigorously identical to that presented in Figure 2b. A 
discontinuity in the state equation used for the calculation of vapor pressure of species 
A is responsible for the unusual behavior observed in Figure 2b. 
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Figure 2 – Sketch (a) and bifurcation diagram (b) of the evaporative cooling reactor. 

4. Conclusions 
A new code, AUTO_DAE, is presented to perform stability analysis of process models 
described by differential-algebraic equations. Tests with chemical engineering problems 
have demonstrated the reliability and robustness of the new code. 
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