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Abstract 
A discontinuous industrial High Density Polyethylene (HDPE) reactor system, 
described by 15 Differential Algebraic Equations (DAEs) and 12 DAEs, has been 
numerically solved in this work. This system is characterised by frequent switches 
between these two sets of DAEs, making the numerical solution expensive. Using an 
extension of Filippov’s regularisation approach, we obtain an equivalent, continuous, 
dynamic model of the discontinuous system. The equivalent dynamic solution is several 
orders of magnitude faster than the discontinuous solution. 

1. Introduction 
Discontinuous systems are especially common in man made technologies. An example 
of this is the sliding mode controller. This approach is present in process industry as 
well. Moudgalya and Jaguste [1] have reported a realistic discontinuous slurry process 
to produce HDPE. Moudgalya et al. [2] have reported that such discontinuities can be 
used to understand fundamental mechanisms, to improve mixing, to enhance heat 
transfer coefficients and to produce stable two phase flows. Numerical solution of these 
systems, however, is expensive owing to frequent switches. This is especially true when 
DAEs are present, thanks to frequent initialisations. Moudgalya and Ryali [3] show that 
these systems exhibit discontinuity sticking, with small step sizes being the solution. 
Finally, in optimisation processes, designed to tune model parameters [1], a complete 
simulation has to be carried out for every objective function evaluation. All of the above 
observations point to the necessity of an efficient integration procedure for such 
discontinuous processes. In this report, we present the equivalent dynamic solution to 
the HDPE reactor system studied by [1] and compare its performance with the 
discontinuous solution.  

2. Discontinuous HDPE Model 
In an industrial slurry process, studied in detail by [1], ethylene is polymerised into 
HDPE in a well mixed reactor in the presence of hydrogen and a Ziegler Natta catalyst 
dispersed in a diluent, a schematic of which is shown in Fig. 1. The slurry level in this 
figure is given by ML4/ρ + ML5, where, the variables are as defined in [1]. First define 
the switching function φ as follows: 
 

4
5

ML
ML Vdϕ = + −

ρ
              (1) 

 
We obtain the following slurry model when φ > 0 (Fig. 1(a)): 
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    (a) Slurry model                (b) Gas model 

Figure 1. A schematic of HDPE reactor, described by slurry and gas models 
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When φ< 0 (Fig. 1(b)), the system is modelled by 
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The following equations are applicable, whatever the value of φ is: 
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In the above model, the subscripts 1 to 5, respectively, denote hydrogen, ethylene, 
catalyst, polymer and diluent. F, L and G, respectively, stand for inflow rate of feed and 
outflow rates of slurry and gases. M denotes the total holdup in the reactor, while, ML 
and MG, respectively, denote the holdup in the slurry and the gas phases. All the 
symbols used above have the same meaning as in [1], except for gs and gg, which now 
denote the densities of the slurry and the gas streams flowing out of the reactor through 
the control valve. A proportional integral controller is used to control this system. For 
further details, the reader is referred to [1]. This system is solved with the help of 
DASSL [4] using the procedure of [1]. Pressure in the reactor, ethylene concentration in 
the gas phase and the slurry level, as functions of time, are shown in Fig. 2. After initial 
swings, the slurry level in the reactor settles down at the level of the dip tube. As gas 
and slurry leave the reactor alternatively, the applicable model also keeps changing [1].  
 

Figure 2. Pressure, ethylene and slurry level in HDPE reactor 
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A mathematical idealisation of this is referred to as sliding. The procedure to handle 
ODE systems in sliding mode is well known [5]. 

3. Equivalent Dynamics 
In this section, we first state the results available for a class of discontinuous, index-1 
DAE systems, while in sliding mode [6,7], and then apply them to the HDPE reactor 
under discussion. Consider a discontinuous system described by the following 
equations: 
 
If   ( ) 0yϕ > , 
 

1 2( , , )
dy

f y z z
dt

+=             (24) 

0 ( , )1g y z=              (25) 

1 20 ( , , )h y z z+=              (26) 
 
Else if ( ) 0yϕ <  
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dt
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1
0 ( , )g y z=              (28) 

1 30 ( , , )h y z z−=              (29) 

Here, 1 2( ) , ( )j kz t R z t R∈ ∈  and 3 ( ) lz t R∈  with j k l m+ + = . We also have, 

: n j k nf R R+ + + → , : n j l nf R R− + + → , : n j jg R R+ → , : n j k kh R R+ + + →  and 

: n j k kh R R+ + + → . Note that in the region where ( ) 0yϕ > , the system consists of nψ

differential equations and j+k algebraic equations while in the region ( ) 0yϕ < we have a 
system with n differential equations and j+l algebraic equations. 
 
 In the HDPE system, Eq. (2) to (6) are denoted by Eq. (24); Eq. (7) to (11) are 
denoted by Eq. (26); Eq. (12) to (16) are denoted by Eq. (27); Eq. (17) and (18) are 
denoted by Eq. (29). Finally, the vector g that appears in Eq. (25) and (28) stands for 
Eq. (19) to (23). If the system reaches sliding mode, the equivalent dynamics can be 
described by [6,7], 
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f y z z f y z z
dt

+ −= α + − α)           (30) 

0 ( , )1g y z=                                                                                                            (31) 

1 20 ( , , )h y z z+=              (32) 

1 30 ( , , )h y z z−=              (33) 
 
Where, α  is calculated as follows: 
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We now apply this approach to the HDPE reactor system [8]: 
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Substituting these in Eq. (34), we obtain 
�
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In order to complete the description of the sliding model, we need to calculate only Eq. 
(30). We obtain the following:�
�
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�
The equivalent dynamic system is solved by DASSL, using the same integration 
parameters as in the discontinuous system. Unlike before, however, there are no 
discontinuities now. We get results identical to the ones in Fig. 2. 
 
  The comparison of two approaches, namely, integration of discontinuous and the 
equivalent dynamic models was carried out in a Mac PowerBook G4, with a 667 MHz 
processor, 512 MB RAM, operating with Mac OS X, version 10.2.8. The time taken by 
the equivalent dynamic approach for the dassl parameter of dtout is taken as the metric 
for comparison. The number of times the discontinuous method required for different 
dtout values is shown in Fig. 3. Note that we are justified in choosing a fixed value of 
dtout for the equivalent dynamic system, as there are no discontinuities in it, whereas, 
one has to choose small values for the discontinuous system, owing to discontinuity 
sticking. The equivalent dynamic model is several orders of magnitude more efficient 
than the discontinuous model. As a matter of fact, one can even argue that it is not fair 
to compare the two models.��
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Figure 3. Ratio of time taken by discontinuous model for different dtout values to time taken by 
equivalent dynamic model with dtout=0.01hr 

4. Conclusion 
Using the extension of Filippov’s regularisation procedure, an equivalent dynamic 
model of a discontinuous HDPE reactor system, modelled by 15 DAEs and 12 DAEs is 
obtained. Numerical solution of the equivalent dynamic system is identical to the one 
obtained through the integration of the discontinuous system. As the proposed method 
converts a discontinuous system into a continuous one on the sliding surface, it is 
several orders of magnitude more efficient than the one involving discontinuous 
models. This is of immense value, especially, when DAEs are to be integrated as a part 
of an optimisation process. 
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