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While the inevitable occurrence of departures from the assumptions made beforehand
can damage least squares reliability, robust estimators will resist them. A number of al-
ternative robust regression estimators have been suggested in the literature over the last
three decades, but little is known about their small-sample performance in the context
of nonlinear regression models. A simulation study comparing four such estimators to-
gether with the usual least squares estimator is presented. It is found that the MM- and
T-estimators are quite efficient when the proportion of outliers in data is not too large.
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1. INTRODUCTION

In the nonlinear regression model, one observes the response variable y obeying the
model

yZ:f(m’L79)+627 2:17,’” (1)

where « is a vector of explanatory variables, 8 is a vector of unknown true parameters
to be estimated, and e is the measurement error. Define the residuals corresponding to
0 as r;,(0) = y; — f(x;,0). It is common to consider the errors ¢; as independent and
identically distributed random variables with zero mean and variance o2, which follow a
specified type of distributions.

The goal of each possible estimator is to draw reliable estimates of the parameters
from data and additionally protect against departures from statistical model assumptions
made beforehand because in practice it is very unlikely that the model assumptions hold
perfectly. They may include the presence of outlying observations and other departures
from the imposed model distribution. Of course, it is recognized that neither classical
least squares (LS) nor, more generally, maximum likelihood methodology is satisfactory
as far as the robustness requirement is concerned, since it depends heavily on the assertion
that the actual error process follows exactly the distribution assumed. For this reason,
a vast amount of literature in robust alternative techniques was developed over the last
30 years.

A measure of robustness frequently used in the literature is the breakdown point (BP)
which is, roughly speaking, the smallest proportion of contaminated data which leads to



280 E.L.T. Concei¢do and A.A.T.G. Portugal

unreliable model parameters. Thus, a regression estimator with high breakdown point
(HBP) is capable of handling multiple outliers, even if they are grouped. Besides, it is
also important to know the uncertainty (bias and sampling variability) of point estimates
on “clean data”. This is assessed by the statistical efficiency criterion calculated as the
ratio of the mean squared error (MSE) in a least squares estimate to the actual MSE of a
(robust) estimate, computed at the Gaussian (normal) distribution. Unfortunately, HBP
estimators tend to have low efficiency.

Rousseeuw [1] proposed the first high breakdown regression estimator, the least me-
dian of squares (LMS), but its very low asymptotic efficiency is a well known drawback.
The same author [1] suggested the least trimmed squares (LTS) estimator which is more
efficient than the LMS estimator. Since then, several methods have been proposed which
combine good asymptotic efficiency with HBP. Among them are the three-stage MM-es-
timator starting with initial HBP regression estimates of Yohai [2] and the 7-estimator of
Yohai and Zamar [3].

Little is known about the small-sample properties of these estimators in the context
of nonlinear regression models. Thus, the main purpose of this article is to investigate
their small-sample performance by means of a Monte Carlo simulation study based on
real data sets. The simulation design considers the effects of proportion of outliers in data
and different error distributions. Another goal is to compare the use of the LMS and LTS
estimators as the initial HBP estimator in the MM-estimator.

The remainder of the paper is organized as follows. Section 2 defines the LMS, LTS,
MM-, and 7-estimates. In Section 3 we summarize the basic aspects of the simulation
study. The different estimators are then compared in Section 4.

2. DEFINITIONS OF ROBUST ESTIMATORS

Least median of squares (LMS) Rousseeuw [1] proposed the first regression esti-
mate with the highest possible BP of 1/2, by minimizing the median of squared errors,
that is

Orns = arg min med r(0), @)

where 0 is an estimate of 8 and med denotes the median.
Least trimmed squares (LTS) The LTS estimate is defined as [1]

h
Iirs = i 2 <h<
0175 = arg min Z r(0), n/2<h<n, (3)

i=1

where r(zi) (0) is the ith squared residual sorted from smallest to largest and h is the number
of these terms which are included in the summation called the coverage of the estimator.
Therefore, the n — h “trimmed” observations that correspond to the largest residuals do
not directly affect the estimator.

Let « =1 — h/n be the amount of trimming called the trimming proportion, with 0 <
a < 1/2. The maximal BP for LTS equals 1/2 and is obtained by choosing « close
to 1/2. However, one may expect a tradeoff between a high value for « and a loss in
efficiency. Thus, the choice of a (or equivalently k) determines the overall performance of
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the LTS estimator, and some effort is required to tune this parameter. Hence, it has been
suggested that lower values for a (the most commonly suggested values are 0.25 and 0.1)
will give a good compromise between robustness and efficiency.
Note that the objective function of the LTS estimator is nonconvex and not differentiable
the same happening for the LMS estimator. Consequently, these optimization problems
cannot be solved by standard derivative-based methods.

The MM-estimator This method proposed by Yohai [2] involves the following steps
as suggested by Stromberg [4]:
1. Compute an initial HBP estimate éHBp (we use LMS as well as LTS) and obtain the
corresponding residuals m(éHBp).
2. Next, calculate the robust residual scale estimate s, given by the solution of the fol-
lowing equation

1 - T é .
" ZPO (@) =b with po(u) = p(u/ko) and b/py(co) = 0.5, (4)
s =1 on
where ky = 0.212 and p is the Hampel loss function defined as follows

“—22 for |u| < a

a(lul—%) fora < Jul <b

2
= - — 5
plu) ab“;+(cb);[1(cz|>} for b < |ul < ¢ )
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abf§+(cfb)% for |u| > ¢,

where a = 1.5, b = 3.5, and ¢ = 8. (Scale estimators measure dispersion and are used to
standardize residuals.) A A A
3. Obtain the LS estimate Ors. Then find the M-estimates [5] 8y and 6 to minimize

@0) =3 (") with it = /i) (©
i=1 "

which satisfies Q(éo) < Q(éHBp) and Q(él) < Q(éLs), respectively, where k; is chosen
as 0.9014 to achieve 95% asymptotic efficiency at the Gaussian distribution. This means
that a local minimum can be used. The final MM-estimate is then Oy = min(éo7 él)
The basic idea is that this estimate inherits the HBP of the initial estimate and simulta-
neously improves the efficiency with the M-estimator at step 3.

T-estimator Yohai and Zamar [3] proposed another HBP estimator with high effi-
ciency. The 7-estimates are defined by minimizing a robust scale of the residuals given
by

0.5 = | 230 (22 (7a)

=1

subject to the constraint

{5 (50)-
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where b/po(00) = 0.5 and s, is an M-estimator of scale implicitly defined by equation (7b).
The choice of pg regulates the robustness, whereas the choice for p; can be tuned to give
good asymptotic efficiency under the Gaussian model. Yohai and Zamar [3] and Tabatabai
and Argyros [6] used the p function

2 2 4
v 1—1‘——!—“7) for |u| < ¢
pe(u) =9 ( s ®)
< for |u| > c.

They recommended py = p,, with ¢g = 1.56 and p; = p., with ¢; = 1.608. In this case,
the T-estimator’s BP is 0.5 and its asymptotic efficiency at the Gaussian distribution is
95%.

Note that the above p function does not have a continuous second derivative, which might
result in outcomes far from optimality using standard optimization algorithms.

3. SIMULATION STUDY

Description of the test model: oxidation of propylene We consider for the oxi-
dation of propylene the model that involves rate constants with Arrhenius temperature
dependence analyzed in Watts [7]

05,
kakeco,cosn,

(9)

"CsHs kacy® 4 nkicoyu,
where 7c,n, denotes the rate of propylene disappearance, k, and k, denote the rate con-
stants of adsorption of oxygen and oxidation of propylene, respectively, ¢ denotes concen-
tration, and n = (moles oxygen required)/(mole propylene reacted) is the stoichiometric
number. To reduce correlation between kinetic parameters in the Arrhenius expression for
a rate reaction we used the reparametrization reported in Lohmann et al. [8] resulting in
6 = (In k,(350 °C), In £, (390 °C), In k,(350 °C), In (390 °C)) as the vector of parameters
to be estimated.

Experimental Simulation is conducted to compare the small-sample behavior of the
estimates described in the former section. More precisely, we compare LS, LMS, LTS(«)
for a = 0.1, 0.25, and 0.5, 7-, and MM-estimators starting with three different HBP
initial estimates—LMS, LTS(0.25), and LTS(0.5). Each sample contains 66 observations
(x;,y;) in which x; is taken from the experimental data. We have taken the set of LS
estimates of the experimental data as the true parameters to generate predictions of the
measured quantities y; according to model (1). The error terms e; are generated from
five different distributions: Gaussian N(0, 02), Cauchy, Skew-Normal [9], and two “scale”
contaminated Gaussians 0.9N(0, o2) + 0.1N(0, (20,)?) and 0.7N(0, 02) 4+ 0.3N(0, (50 )?)—
denoted as CN(0.1,2) and CN(0.3, 5), respectively. Two proportions of outliers in data are
considered in each simulated data set, namely 10% (small contamination) and 30% (high
contamination). Certain observations, chosen at random, are modified to be “bad” data
points by shifting upwards the response variable by 5a, for 10% bad data and 100, for 30%

bad data. Here, o, may be estimated from the data as 6, = \/ZLI 7:(0Ls)/(n — n,) with
n, being the number of parameters in model (1). The number of Monte Carlo replications
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Figure 1. Efficiencies of the competing estimates for In k,(390 °C). The efficiency criterion
has been normalized by its value for the LS estimate obtained only under Gaussian error
(contamination 0%). Each circle shows the value of efficiency, whereas the darker line
segment shows the bootstrap [15] percentile 95% confidence interval obtained with 999
bootstrap replications.

is 100. We used the criterion med (|0 — 6]) [10], a robust analog of the MSE, to evaluate
the performance of an estimator.

Computing the estimates The major computational difficulty with the estimates
considered in this paper is that they cannot be calculated by standard optimization al-
gorithms. We therefore adopted the improved version by Lee et al. [11] of the differential
evolution (DE) algorithm proposed by Storn and Price [12] for all the regression estima-
tors. This method is a stochastic global search heuristic that applies to bound constrained
problems. Note that if the univariate scale estimator is computed from (7b), then by plug-
ging s, into (7a) a T-estimate can be obtained by solving an unconstrained minimization
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problem. A convenient procedure to obtain the solution for both the scale estimators (4)
and (7b) is the algorithm of Brent [13] that does not require derivatives. The final stage
of the MM-estimator uses the L-BFGS-B algorithm [14].

4. MONTE CARLO RESULTS

Fig. 1 displays results concerning the performance of the robust estimators. For short-
ness, we only report the simulation results for the In k,(390 °C) parameter.

As expected, for departures from Gaussian distributed data (especially for CN(0.3,5)
and Cauchy), we clearly see the advantage of the robust methods over the classical.
This becomes even more visible for the outlier contamination scenarios. Generally, no
significant difference could be found between the MM-estimates computed with the LMS
estimator and when using the LTS estimator, except when the outlier proportion is 30% for
which LTS(0.25) is worst. Furthermore, we also note that for (uncontaminated) Gaussian
distributed errors the loss in efficiency of both 7- and MM-estimates with respect to least
squares is rather small or barely distinguishable.

For null or small contamination levels, we can observe that the 7- and MM-estimates
show an overall best behavior, albeit quite close to the LTS(0.1) estimator. On the
other hand we can see that, in general terms, the LMS and LTS(0.5) estimates are the
worst, followed by LTS(0.25). For high contamination, essentially these estimators behave
the opposite way compared to small fractions of contamination. Note that among HBP
estimates, LTS(0.1) and MM- clearly lose.

These simulation results support the use of the MM- or 7-estimator as a valuable
alternative to the existing classical methods in the practical applications for which the
proportion of outliers in data is not too large.
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